cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097312 Numbers with property that can bring the first digit to the back of the number to get a prime (zeros are dropped).

This page as a plain text file.
%I A097312 #21 May 08 2023 09:33:42
%S A097312 2,3,5,7,11,13,14,16,17,20,30,31,32,34,35,37,38,50,70,71,73,74,76,79,
%T A097312 91,92,95,97,98,101,103,104,106,107,110,113,115,118,119,121,124,125,
%U A097312 127,128,131,133,140,142,143,146,149,152,154,157,160,163,164,166,169,170
%N A097312 Numbers with property that can bring the first digit to the back of the number to get a prime (zeros are dropped).
%C A097312 First differs from A095179 at a(31) = 103 since A095179(31) = 104 because 401 is prime but 301 = 7 * 43. - _Alonso del Arte_, Apr 12 2020
%H A097312 Michael S. Branicky, <a href="/A097312/b097312.txt">Table of n, a(n) for n = 1..11018</a> (all terms < 10**5)
%e A097312 1234 is in the sequence because 2341 is prime.
%t A097312 Select[Range[200],PrimeQ[FromDigits[RotateLeft[IntegerDigits[#]]]] &] (* _Harvey P. Dale_, Jun 06 2018 *)
%o A097312 (Python)
%o A097312 from sympy import isprime
%o A097312 def ok(n): s = str(n); return isprime(int(s[1:]+s[0]))
%o A097312 print([k for k in range(171) if ok(k)]) # _Michael S. Branicky_, May 08 2023
%K A097312 base,easy,nonn
%O A097312 1,1
%A A097312 _Jason Earls_, Mar 16 2005