This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097314 #47 Jul 06 2023 20:54:12 %S A097314 1,39,1481,56239,2135601,81096599,3079535161,116941239519, %T A097314 4440687566561,168629186289799,6403468391445801,243163169688650639, %U A097314 9233796979777278481,350641122061847931639,13315128841370444123801,505624254850015028772799,19200406555459200649242561,729109824852599609642444519,27686972937843325965763649161 %N A097314 Pell equation solutions (3*a(n))^2 - 10*b(n)^2 = -1 with b(n) = A097315(n), n >= 0. %H A097314 Indranil Ghosh, <a href="/A097314/b097314.txt">Table of n, a(n) for n = 0..631</a> %H A097314 Christian Aebi and Grant Cairns, <a href="http://math.colgate.edu/~integers/x48/x48.pdf">Lattice equable quadrilaterals III: tangential and extangential cases</a>, Integers (2023) Vol. 23, #A48. %H A097314 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097314 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16. %H A097314 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A097314 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (38,-1). %F A097314 G.f.: (1 + x)/(1 - 38*x + x^2). %F A097314 a(n) = S(n, 38) + S(n-1, 38) = S(2*n, 2*sqrt(10)), with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x). %F A097314 a(n) = (-1)^n*T(2*n + 1, 3*i)/(3*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120. %F A097314 a(n) = ((3 + sqrt(10))*(19 + 6*sqrt(10))^n - ((-3 + sqrt(10))*(19 - 6*sqrt(10))^n))/6. - _Gerry Martens_, Jul 09 2015 %F A097314 a(n) = (1/3)*sinh((2*n + 1)*arcsinh(3)). - _Bruno Berselli_, Apr 03 2018 %e A097314 (x,y) = (3,1), (117,37), (4443,1405), ... give the positive integer solutions to x^2 - 10*y^2 = -1. %t A097314 LinearRecurrence[{38, -1}, {1, 39}, 20] (* _Ray Chandler_, Aug 11 2015 *) %o A097314 (PARI) Vec((1+x)/(1-38*x+x^2) + O(x^20)) \\ _Michel Marcus_, Jul 10 2015 %Y A097314 Cf. A078987 for S(n, 38). %Y A097314 Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775. %K A097314 nonn,easy %O A097314 0,2 %A A097314 _Wolfdieter Lang_, Aug 31 2004 %E A097314 More terms from _Indranil Ghosh_, Feb 04 2017