cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097318 Numbers with more than one prime factor and, in the ordered factorization, the exponent never increases when read from left to right.

This page as a plain text file.
%I A097318 #22 Nov 11 2019 10:50:22
%S A097318 6,10,12,14,15,20,21,22,24,26,28,30,33,34,35,36,38,39,40,42,44,45,46,
%T A097318 48,51,52,55,56,57,58,60,62,63,65,66,68,69,70,72,74,76,77,78,80,82,84,
%U A097318 85,86,87,88,91,92,93,94,95,96,99,100,102,104,105,106,110,111,112,114
%N A097318 Numbers with more than one prime factor and, in the ordered factorization, the exponent never increases when read from left to right.
%C A097318 If n = Product_{k=1..m} p(k)^e(k), then m > 1, e(1) >= e(2) >= ... >= e(m).
%C A097318 These are numbers whose ordered prime signature is weakly decreasing. Weakly increasing is A304678. Ordered prime signature is A124010. - _Gus Wiseman_, Nov 10 2019
%H A097318 Alois P. Heinz, <a href="/A097318/b097318.txt">Table of n, a(n) for n = 1..20000</a>
%H A097318 S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper34/page1.htm">Asymptotic formulas for the distribution of integers of various types</a>, Proc. London Math. Soc. 2, 16 (1917), 112-132.
%e A097318 60 is 2^2*3^1*5^1, A001221(60)=3 and 2>=1>=1, so 60 is in sequence.
%p A097318 q:= n-> (l-> (t-> t>1 and andmap(i-> l[i, 2]>=l[i+1, 2],
%p A097318         [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
%p A097318 select(q, [$1..120])[];  # _Alois P. Heinz_, Nov 11 2019
%t A097318 fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] <= 0]; Select[Range[2, 200], fQ] (* _T. D. Noe_, Nov 04 2013 *)
%o A097318 (PARI) for(n=1, 130, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]<F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
%Y A097318 Subset of A024619. Cf. A097319, A097320, A230766.
%Y A097318 Cf. A001222, A025487, A118914, A124010, A304678, A329138, A329142.
%K A097318 nonn
%O A097318 1,1
%A A097318 _Ralf Stephan_, Aug 04 2004