cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097320 Numbers with more than one distinct prime factor and, in the ordered (canonical) factorization, the exponent always decreases when read from left to right.

This page as a plain text file.
%I A097320 #36 Jun 02 2025 15:15:21
%S A097320 12,20,24,28,40,44,45,48,52,56,63,68,72,76,80,88,92,96,99,104,112,116,
%T A097320 117,124,135,136,144,148,152,153,160,164,171,172,175,176,184,188,189,
%U A097320 192,200,207,208,212,224,232,236,244,248,261,268,272,275,279,284,288
%N A097320 Numbers with more than one distinct prime factor and, in the ordered (canonical) factorization, the exponent always decreases when read from left to right.
%C A097320 The numbers in A304686 that are not prime powers. - _Peter Munn_, Jun 01 2025
%H A097320 Michael S. Branicky, <a href="/A097320/b097320.txt">Table of n, a(n) for n = 1..10000</a>
%F A097320 If n = Product_{k=1..m} p(k)^e(k), with p(k) > p(k-1) for k > 1, then m > 1, e(1) > e(2) > ... > e(m).
%e A097320 The ordered (canonical) factorization of 80 is 2^4 * 5^1 and 4 > 1, so 80 is in sequence.
%t A097320 fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] < 0]; Select[Range[2, 288], fQ] (* _T. D. Noe_, Nov 04 2013 *)
%o A097320 (PARI) for(n=1, 320, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]<=F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
%o A097320 (PARI) is(n) = my(f = factor(n)[,2]); #f > 1 && vecsort(f,,12) == f \\ _Rick L. Shepherd_, Jan 17 2018
%o A097320 (Python)
%o A097320 from sympy import factorint
%o A097320 def ok(n):
%o A097320     e = list(factorint(n).values())
%o A097320     return 1 < len(e) == len(set(e)) and e == sorted(e, reverse=True)
%o A097320 print([k for k in range(289) if ok(k)]) # _Michael S. Branicky_, Dec 20 2021
%Y A097320 Subsequence of A126706, A097318, A112769, A304686.
%Y A097320 Subsequences: A057715, A096156.
%Y A097320 Cf. A097319, A230766.
%K A097320 nonn,easy
%O A097320 1,1
%A A097320 _Ralf Stephan_, Aug 04 2004
%E A097320 Edited by _Peter Munn_, Jun 01 2025