This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097331 #36 Jan 28 2020 18:48:36 %S A097331 1,1,0,1,0,2,0,5,0,14,0,42,0,132,0,429,0,1430,0,4862,0,16796,0,58786, %T A097331 0,208012,0,742900,0,2674440,0,9694845,0,35357670,0,129644790,0, %U A097331 477638700,0,1767263190,0,6564120420,0,24466267020,0,91482563640,0,343059613650,0 %N A097331 Expansion of 1 + 2x/(1 + sqrt(1 - 4x^2)). %C A097331 Binomial transform is A097332. Second binomial transform is A014318. %C A097331 Essentially the same as A126120. - _R. J. Mathar_, Jun 15 2008 %C A097331 Hankel transform is A087960(n) = (-1)^binomial(n+1,2). - _Paul Barry_, Aug 10 2009 %H A097331 Michael De Vlieger, <a href="/A097331/b097331.txt">Table of n, a(n) for n = 0..3340</a> %H A097331 Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, <a href="http://math.colgate.edu/~integers/t46/t46.Abstract.html">Motzkin paths with a restricted first return decomposition</a>, Integers (2019) Vol. 19, A46. %F A097331 a(n) = 0^n + Catalan((n-1)/2)(1-(-1)^n)/2. %F A097331 Unsigned version of A090192, A105523. - _Philippe Deléham_, Sep 29 2006 %F A097331 From _Paul Barry_, Aug 10 2009: (Start) %F A097331 G.f.: 1+xc(x^2), c(x) the g.f. of A000108; %F A097331 G.f.: 1/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+... (continued fraction); %F A097331 G.f.: 1+x/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). (End) %F A097331 G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+2*x) (continued fraction); more generally g.f. C(x/(1+2*x)) where C(x) is the g.f. for the Catalan numbers (A000108). - _Joerg Arndt_, Mar 18 2011 %F A097331 Conjecture: (n+1)*a(n) + n*a(n-1) + 4*(-n+2)*a(n-2) + 4*(-n+3)*a(n-3)=0. - _R. J. Mathar_, Dec 02 2012 %F A097331 Recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ 2^(n+1)/((n+1)^(3/2)*sqrt(2*Pi)). - _Fung Lam_, Mar 17 2014 %p A097331 A097331_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; %p A097331 for w from 1 to n do a[w]:=a[w-1]-(-1)^w*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a,list)end: A097331_list(48); # _Peter Luschny_, May 19 2011 %t A097331 a[0] = 1; a[n_?OddQ] := CatalanNumber[(n-1)/2]; a[_] = 0; Table[a[n], {n, 0, 48}] (* _Jean-François Alcover_, Jul 24 2013 *) %o A097331 (Sage) %o A097331 def A097331_list(n) : %o A097331 D = [0]*(n+2); D[1] = 1 %o A097331 b = True; h = 1; R = [] %o A097331 for i in range(2*n-1) : %o A097331 if b : %o A097331 for k in range(h,0,-1) : D[k] -= D[k-1] %o A097331 h += 1; R.append(abs(D[1])) %o A097331 else : %o A097331 for k in range(1,h, 1) : D[k] += D[k+1] %o A097331 b = not b %o A097331 return R %o A097331 A097331_list(49) # _Peter Luschny_, Jun 03 2012 %K A097331 easy,nonn %O A097331 0,6 %A A097331 _Paul Barry_, Aug 05 2004