cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097344 Numerators in binomial transform of 1/(n+1)^2.

This page as a plain text file.
%I A097344 #35 Apr 11 2020 06:04:41
%S A097344 1,5,29,103,887,1517,18239,63253,332839,118127,2331085,4222975,
%T A097344 100309579,184649263,1710440723,6372905521,202804884977,381240382217,
%U A097344 13667257415003,25872280345103,49119954154463,93501887462903,4103348710010689,7846225754967739,75162749477272151
%N A097344 Numerators in binomial transform of 1/(n+1)^2.
%C A097344 Is this identical to A097345? - Aaron Gulliver, Jul 19 2007. The answer turns out to be No - see A134652.
%C A097344 If the putative formula a(n)=A081528(n) sum{k=0..n, binomial(n, k)/(k+1)^2} were true, then this sequence coincides with A097345 according to Mathar's notes. However, the term n=9 in the binomial transform of 1/(n+1)^2 has the denominator 5040=A081528(9)/4=A081528(10)/5. So the formula cannot be true. - _M. F. Hasler_, Jan 25 2008
%C A097344 a(n) is also the numerator of u(n+1) with u(n) = (1/n)*Sum_{k=1..n} (2^k-1)/k and we have the formula: polylog(2,x/(1-x)) = Sum_{n>=1} u(n)*x^n on the interval [-1/2, 1/2]. - _Groux Roland_, Feb 01 2009
%H A097344 Chai Wah Wu, <a href="/A097344/b097344.txt">Table of n, a(n) for n = 0..500</a>
%H A097344 R. J. Mathar, <a href="/A097345/a097345.pdf">Notes on an attempt to prove that A097344 and A097345 are identical</a>
%F A097344 a(n) = numerator(b(n)), b(n) = 1/((n+1)^2)*((n)*(3*n+1)*b(n-1)-2*(n-1)*(n)*b(n-2)+1). - _Vladimir Kruchinin_, May 31 2016
%e A097344 The first values of the binomial transform of 1/(n+1)^2 are 1, 5/4, 29/18, 103/48, 887/300, 1517/360, 18239/2940, 63253/6720, 332839/22680, 118127/5040, 2331085/60984, ...
%p A097344 f:=n->numer(add( binomial(n,k)/(k+1)^2, k=0..n));
%t A097344 Table[HypergeometricPFQ[{1, 1, -n}, {2, 2}, -1] // Numerator, {n, 0, 24}] (* _Jean-François Alcover_, Oct 14 2013 *)
%o A097344 (PARI) A097344(n)=numerator(sum(k=0,n,binomial(n,k)/(k+1)^2)) \\ _M. F. Hasler_, Jan 25 2008
%o A097344 (Python)
%o A097344 from fractions import Fraction
%o A097344 A097344_list, tlist = [1], [Fraction(1,1)]
%o A097344 for i in range(1,100):
%o A097344     for j in range(len(tlist)):
%o A097344         tlist[j] *= Fraction(i,i-j)
%o A097344     tlist += [Fraction(1,(i+1)**2)]
%o A097344     A097344_list.append(sum(tlist).numerator) # _Chai Wah Wu_, Jun 04 2015
%o A097344 (Maxima)
%o A097344 a(n):=if n<0 then 1 else 1/((n+1)^2)*((n)*(3*n+1)*a(n-1)-2*(n-1)*(n)*a(n-2)+1);
%o A097344 makelist(num(a(n),n,0,10); /* _Vladimir Kruchinin_, Jun 01 2016 */
%o A097344 (Sage)
%o A097344 def A097344_list(size):
%o A097344     R, L = [1], [1]
%o A097344     inc = sqr = 1
%o A097344     for i in range(1, size):
%o A097344         for j in range(i):
%o A097344             L[j] *= i / (i - j)
%o A097344         inc += 2; sqr += inc
%o A097344         L.extend(1 / sqr)
%o A097344         R.append(sum(L).numerator())
%o A097344     return R
%o A097344 A097344_list(50) # (after _Chai Wah Wu_) _Peter Luschny_, Jun 05 2016
%Y A097344 Cf. A097345, A134652.
%K A097344 easy,nonn,frac
%O A097344 0,2
%A A097344 _Paul Barry_, Aug 06 2004
%E A097344 Edited and corrected by Daniel Glasscock (glasscock(AT)rice.edu), Jan 04 2008 and _M. F. Hasler_, Jan 25 2008
%E A097344 Moved comment on numerators of a logarithmic g.f. over to A097345 - _R. J. Mathar_, Mar 04 2010