A097368 Least term in row n of the Fibonacci regression array in A097367.
1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 4, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 3, 4, 5, 1, 5, 4, 3, 6, 3, 5, 5, 2, 6, 4, 4, 6, 2, 6, 5, 3, 7, 4, 5, 6, 1, 7, 5, 4, 7, 3, 6, 6, 3, 8, 5, 5, 7, 2, 7, 6, 4, 8, 4, 6, 7, 2, 8, 6, 5, 8, 3, 7, 7, 4, 9, 5, 6, 8, 1, 8, 7, 5, 9, 4, 7, 8, 3, 9, 6, 6, 9, 3, 8, 8, 5, 10, 5
Offset: 2
Examples
Row 8 of the array in A097367 is 7 6 5 4 1 4 6, of which the least term is T(8,5)=1.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
T:= proc(n,k) local s,t,u; s:= n; t:= k; do u:= s-t; if u <= 0 then return t fi; s:= t; t:= u; od; end proc: f:= n -> min(seq(T(n,k),k=1..n-1)): map(f, [$2..200]); # Robert Israel, Jan 19 2018
-
Mathematica
f[n_] := Fibonacci[n]; d[n_, k_, 1] := n; d[n_, k_, 2] := k; d[n_, k_, j_] := ((-1)^j) (k*f[j - 1] - n*f[j - 2]); s[n_, k_] := Select[Range[100], d[n, k, # + 1] <= 0 &, 1]; t = Table[d[n, k, s[n, k]], {n, 2, 20}, {k, 1, n - 1}]; (* A097367 array *) Flatten[t] (* A097367 sequence *) Table[Min[Flatten[Table[d[n, k, s[n, k]], {k, 1, n - 1}]]], {n, 2, 100}] (* A097368 *) (* Clark Kimberling, Oct 14 2016 *)
Extensions
a(46) = 6 inserted by Clark Kimberling, Oct 14 2016
Comments