cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097422 Sum{k=1 to n} H(k) k!, where H(k) = sum{j=1 to k} 1/j.

This page as a plain text file.
%I A097422 #8 Mar 20 2015 18:35:23
%S A097422 0,1,4,15,65,339,2103,15171,124755,1151331,11779971,132323811,
%T A097422 1618766691,21421525731,304887173091,4644050174691,75378332568291,
%U A097422 1298783923147491,23675771981669091,455240918799307491
%N A097422 Sum{k=1 to n} H(k) k!, where H(k) = sum{j=1 to k} 1/j.
%C A097422 H(k) k! = s(k+1,2), where s() is an unsigned Stirling number of the first kind (A000254).
%e A097422 a(3) = 1*1 + (1 +1/2)*2 + (1 +1/2 +1/3)*6 = 15
%t A097422 a[n_] := Sum[ HarmonicNumber[k]k!, {k, 1, n}]; Table[ a[n], {n, 0, 20}] (* _Robert G. Wilson v_, Aug 26 2004 *)
%o A097422 (PARI) hh(n)=sum(i=1,n,1/i); ff(n)=sum(k=1,n,hh(k)*k!); for (i=1,30,print1(ff(i),",")) (Bouayoun)
%Y A097422 Cf. A000254.
%K A097422 easy,nonn
%O A097422 0,3
%A A097422 _Leroy Quet_, Aug 21 2004
%E A097422 More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com) and _Robert G. Wilson v_, Aug 23 2004