cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097431 Integer part of the hypotenuse of right triangles with consecutive prime legs.

This page as a plain text file.
%I A097431 #21 Mar 30 2024 16:29:22
%S A097431 3,5,8,13,17,21,25,29,37,42,48,55,59,63,70,79,84,90,97,101,107,114,
%T A097431 121,131,140,144,148,152,157,169,182,189,195,203,212,217,226,233,240,
%U A097431 248,254,263,271,275,280,290,307,318,322,326,333,339,347,359,367,376,381
%N A097431 Integer part of the hypotenuse of right triangles with consecutive prime legs.
%H A097431 Harvey P. Dale, <a href="/A097431/b097431.txt">Table of n, a(n) for n = 1..1000</a>
%F A097431 a(n) = floor(sqrt(prime(n)^2 + prime(n+1)^2)) = floor(sqrt(A069484(n))).
%e A097431 If legs = 3,5 then floor(sqrt(9+25)) = 5, the 2nd entry.
%t A097431 Table[Floor[Sqrt[Prime[n]^2 + Prime[n + 1]^2]], {n, 60}] (* _Vincenzo Librandi_, Mar 11 2015 *)
%t A097431 Floor[Sqrt[Total[#^2]]]&/@Partition[Prime[Range[60]],2,1] (* _Harvey P. Dale_, Mar 30 2024 *)
%o A097431 (PARI) a(n) = for(j=1,n,x=prime(j);y=prime(j+1);print1(floor(sqrt(x^2+y^2))","))
%o A097431 (Magma) [Floor(Sqrt(NthPrime(n)^2 + NthPrime(n+1)^2)): n in [1..60]]; // _Vincenzo Librandi_, Mar 11 2015
%Y A097431 Cf. A069484.
%K A097431 nonn
%O A097431 1,1
%A A097431 _Cino Hilliard_, Aug 22 2004