cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097474 Triangle T(n,k) read by rows: see formula lines for definition.

This page as a plain text file.
%I A097474 #10 Jul 26 2015 10:01:00
%S A097474 1,-1,6,2,-10,10,-17,84,-70,28,124,-612,504,-168,36,-2764,13640,
%T A097474 -11220,3696,-660,88,43688,-215592,177320,-58344,10296,-1144,104,
%U A097474 -1859138,9174480,-7545720,2482480,-437580,48048,-3640,240,51236656,-252842768,207954880,-68414528,12057760,-1322464,99008,-5440
%N A097474 Triangle T(n,k) read by rows: see formula lines for definition.
%D A097474 H. W. Gould, Power sum identities for arbitrary symmetric arrays, SIAM J. Appl. Math., 17 (1969), 307-316.
%F A097474 T(n, n) = (2n+1)2^floor((n+1)/2), n >= 0.
%F A097474 2^-floor((n+2)/2)*T(n+1, k) = binomial(2n+3, 2k) - Sum_{j=k..n} binomial(2n+3, 2j+1)*2^-floor((j+3)/2)*T(j, k), k=0..n.
%e A097474 Triangle begins:
%e A097474 1
%e A097474 -1 6
%e A097474 2 -10 10
%e A097474 -17 84 -70 28
%e A097474 124 -612 504 -168 36
%t A097474 T[n_, n_] := (2n + 1)2^Floor[(n + 1)/2]; T[n_, k_] := (Binomial[2n + 1, 2k] - Sum[ Binomial[2n + 1, 2j + 1]*2^-Floor[(j + 3)/2]*T[j, k], {j, k, n - 1}])(2^Floor[(n + 1)/2]); Flatten[ Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* _Robert G. Wilson v_, May 10 2005 *)
%Y A097474 Cf. A097578, A097716, A097749.
%K A097474 sign,tabl,easy
%O A097474 0,3
%A A097474 _N. J. A. Sloane_, Sep 21 2004
%E A097474 More terms from _Emeric Deutsch_, Dec 24 2004