cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097545 Numerators of "Farey fraction" approximations to Pi.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 7, 10, 13, 16, 19, 22, 25, 47, 69, 91, 113, 135, 157, 179, 201, 223, 245, 267, 289, 311, 333, 355, 688, 1043, 1398, 1753, 2108, 2463, 2818, 3173, 3528, 3883, 4238, 4593, 4948, 5303, 5658, 6013, 6368, 6723, 7078, 7433, 7788, 8143, 8498, 8853
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2004

Keywords

Comments

Given a real number x >= 1 (here x = Pi), start with 1/0 and 0/1 and construct the sequence of fractions f_n = r_n/s_n such that:
f_{n+1} = (r_k + r_n)/(s_k + s_n) where k is the greatest integer < n such that f_k <= x <= f_n. Sequence gives values r_n.
Write a 0 if f_n <= x and a 1 if f_n > x. This gives (for x = Pi) the sequence 1, 0, 0, 0, 1, 1, 1, 1, 0 (7 times), 1 (15 times), 0, 1, ... Ignore the initial string 1, 0, 0, 0, which is always the same. Look at the run lengths of the remaining sequence, which are in this case L_1 = 4, L_2 = 7, L_3 = 15, L_4 = 1, L_5 = 292, etc. (A001203). Christoffel showed that x has the continued fraction representation (L_1 - 1) + 1/(L_2 + 1/(L_3 + 1/(L_4 + ...))).

Examples

			The fractions are 1/0, 0/1, 1/1, 2/1, 3/1, 4/1, 7/2, 10/3, 13/4, 16/5, 19/6, 22/7, 25/8, 47/15, ...
		

References

  • C. Brezinski, History of Continued Fractions and Padé Approximants, Springer-Verlag, 1991; pp. 151-152.
  • E. B. Christoffel, Observatio arithmetica, Ann. Math. Pura Appl., (II) 6 (1875), 148-153.

Crossrefs

Cf. A097546.

Programs

  • Mathematica
    f[x_, n_] := (m = Floor[x]; f0 = {m, m+1/2, m+1};
    r = ({a___, b_, c_, d___} /; b < x < c) :> {b, (Numerator[b] + Numerator[c]) / (Denominator[b] + Denominator[c]), c}; Join[{m, m+1}, NestList[# /. r &, f0, n-3][[All, 2]]]); Join[{1, 0, 1, 2}, f[Pi, 48]] // Numerator  (* Jean-François Alcover, May 18 2011 *)

Extensions

More terms from Joshua Zucker, May 08 2006