A097545 Numerators of "Farey fraction" approximations to Pi.
1, 0, 1, 2, 3, 4, 7, 10, 13, 16, 19, 22, 25, 47, 69, 91, 113, 135, 157, 179, 201, 223, 245, 267, 289, 311, 333, 355, 688, 1043, 1398, 1753, 2108, 2463, 2818, 3173, 3528, 3883, 4238, 4593, 4948, 5303, 5658, 6013, 6368, 6723, 7078, 7433, 7788, 8143, 8498, 8853
Offset: 0
Examples
The fractions are 1/0, 0/1, 1/1, 2/1, 3/1, 4/1, 7/2, 10/3, 13/4, 16/5, 19/6, 22/7, 25/8, 47/15, ...
References
- C. Brezinski, History of Continued Fractions and Padé Approximants, Springer-Verlag, 1991; pp. 151-152.
- E. B. Christoffel, Observatio arithmetica, Ann. Math. Pura Appl., (II) 6 (1875), 148-153.
Links
- Dave Rusin, Farey fractions on sci.math [Broken link]
- Dave Rusin, Farey fractions on sci.math [Cached copy]
Crossrefs
Cf. A097546.
Programs
-
Mathematica
f[x_, n_] := (m = Floor[x]; f0 = {m, m+1/2, m+1}; r = ({a___, b_, c_, d___} /; b < x < c) :> {b, (Numerator[b] + Numerator[c]) / (Denominator[b] + Denominator[c]), c}; Join[{m, m+1}, NestList[# /. r &, f0, n-3][[All, 2]]]); Join[{1, 0, 1, 2}, f[Pi, 48]] // Numerator (* Jean-François Alcover, May 18 2011 *)
Extensions
More terms from Joshua Zucker, May 08 2006
Comments