This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097555 #11 Apr 20 2021 06:49:06 %S A097555 1,8,45,205,831,3133,11294,39585,136302,464026,1568151,5273999, %T A097555 17681042,59149925,197598856,659479754,2199585548,7333198205, %U A097555 24441067317,81444567492,271360676916,904051477063,3011711782025,10032660556567,33420042561972 %N A097555 Number of positive words of length n in the monoid Br_8 of positive braids on 9 strands. %H A097555 G. C. Greubel, <a href="/A097555/b097555.txt">Table of n, a(n) for n = 0..1000</a> %H A097555 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (8,-25,45,-59,57,-41,21,-7,1). %F A097555 G.f.: (1 +x^2)^6 /(1 -8*x +25*x^2 -45*x^3 +59*x^4 -57*x^5 +41*x^6 -21*x^7 +7*x^8 -x^9). %t A097555 LinearRecurrence[{8,-25,45,-59,57,-41,21,-7,1}, {1,8,45,205,831,3133,11294,39585, 136302, 464026, 1568151, 5273999, 17681042}, 41] (* _G. C. Greubel_, Apr 20 2021 *) %o A097555 (Magma) %o A097555 R<x>:=PowerSeriesRing(Integers(), 40); %o A097555 Coefficients(R!( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) )); // _G. C. Greubel_, Apr 20 2021 %o A097555 (Sage) %o A097555 def A097555_list(prec): %o A097555 P.<x> = PowerSeriesRing(ZZ, prec) %o A097555 return P( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) ).list() %o A097555 A097555_list(40) # _G. C. Greubel_, Apr 20 2021 %Y A097555 Cf. A097550, A097551, A097552, A097553, A097554, A097556. %K A097555 nonn,easy %O A097555 0,2 %A A097555 _D n Verma_, Aug 16 2004 %E A097555 Edited and extended by _Max Alekseyev_, Jun 17 2011