This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097586 #12 Aug 11 2025 10:20:53 %S A097586 0,2,4,6,8,10,12,14,16,18,2,4,6,8,10,12,14,16,18,20,1,5,9,13,17,21,25, %T A097586 29,33,37,3,7,11,15,19,23,27,31,35,39,3,11,19,27,35,43,51,59,67,75,5, %U A097586 13,21,29,37,45,53,61,69,77,7,23,39,55,71,87,103,119,135,151,9,25,41,57,73 %N A097586 Table T(n,n) read by rows: T(1,1)=0; then if n even T(n,1)=T(n-1,1)+2 and if n odd T(n,1)=T(n-2,1)+T(n-1,1)-1 then T(n,j)=T(n,j-1) + 2^floor((n+1)/2). %C A097586 Integers > 1 appear exactly twice, 0 and 1 only once. Consecutive primes with gap 4 are consecutive in rows 3 or 4 %C A097586 The sequence contains the first 10 elements of row n=1, then the first 10 elements of row n=2, then the first 10 elements of row n=3 etc. The array is not read in full, not by diagonals and not as a lower or upper triangle. - _R. J. Mathar_, May 01 2024 %F A097586 T(n,j) = j*2^((n + n mod 2)/2) - 2^((n - 1 - (n + 1) mod 2)/2) + (-1)^(n mod 2). - _Ctibor O. Zizka_, Aug 11 2025 %e A097586 0 2 4 6 8 10 12 14 16 18 %e A097586 2 4 6 8 10 12 14 16 18 20 %e A097586 1 5 9 13 17 21 25 29 33 37 %e A097586 3 7 11 15 19 23 27 31 35 39 %e A097586 3 11 19 27 35 43 51 59 67 75 %e A097586 5 13 21 29 37 45 53 61 69 77 %e A097586 7 23 39 55 71 87 103 119 135 151 %e A097586 9 25 41 57 73 89 105 121 137 153 %e A097586 15 47 79 111 143 175 207 239 271 303 %e A097586 17 49 81 113 145 177 209 241 273 305 %e A097586 31 95 159 223 287 351 415 479 543 607 %e A097586 33 97 161 225 289 353 417 481 545 609 %e A097586 63 191 319 447 575 703 831 959 1087 1215 %e A097586 65 193 321 449 577 705 833 961 1089 1217 %e A097586 127 383 639 895 1151 1407 1663 1919 2175 2431 %e A097586 129 385 641 897 1153 1409 1665 1921 2177 2433 %e A097586 255 767 1279 1791 2303 2815 3327 3839 4351 4863 %e A097586 257 769 1281 1793 2305 2817 3329 3841 4353 4865 %p A097586 A097586 := proc(n,k) %p A097586 if n < 1 then %p A097586 0 ; %p A097586 elif k < 1 then %p A097586 0 ; %p A097586 elif k = 1 then %p A097586 if n = 1 then %p A097586 0; %p A097586 elif type(n,'even') then %p A097586 procname(n-1,1)+2 ; %p A097586 else %p A097586 procname(n-2,1)+procname(n-1,1)-1 ; %p A097586 end if; %p A097586 else %p A097586 procname(n,k-1)+2^floor((n+1)/2) ; %p A097586 end if; %p A097586 end proc: %p A097586 for n from 1 to 18 do %p A097586 for k from 1 to 10 do %p A097586 printf("%5d ",A097586(n,k)) ; %p A097586 end do: %p A097586 printf("\n") ; %p A097586 end do: # _R. J. Mathar_, May 01 2024 %K A097586 nonn,less %O A097586 1,2 %A A097586 _Pierre CAMI_, Sep 20 2004