cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097648 a(n) is the least non-palindromic number m such that phi(m)=phi(reversal(m))=4*10^(n+2), or 0 if no such number exists.

This page as a plain text file.
%I A097648 #18 Jun 14 2022 18:28:18
%S A097648 10040,110440,1014040,11154440,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T A097648 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%N A097648 a(n) is the least non-palindromic number m such that phi(m)=phi(reversal(m))=4*10^(n+2), or 0 if no such number exists.
%C A097648 It seems that 10 divides all terms of this sequence.
%H A097648 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_282.htm">f(p)=f(p') </a>, puzzle 282
%F A097648 a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m)
%e A097648 a(4)=11154440 because phi(11154440)=phi(04445111)=4000000 and 11154440 is the earliest non-palindromic number with this property.
%t A097648 a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m);Do[Print[a[n]], {n, 4}]
%Y A097648 Subsequence of A097647.
%K A097648 base,nonn,more
%O A097648 1,1
%A A097648 _Farideh Firoozbakht_, Sep 04 2004
%E A097648 Better definition and more terms from _David Wasserman_, Dec 28 2007
%E A097648 a(27)-a(49) from _Max Alekseyev_, Oct 17 2008; Aug 15 2013; Jun 14 2022