cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097672 Decimal expansion of the constant 6*exp(psi(5/6) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

This page as a plain text file.
%I A097672 #19 Feb 27 2021 13:20:38
%S A097672 4,3,8,5,2,4,5,9,8,6,2,5,0,8,0,8,1,7,3,6,9,9,4,8,9,9,4,3,2,2,9,5,6,2,
%T A097672 0,7,7,6,5,0,8,0,1,2,8,5,0,0,9,0,2,7,6,3,0,4,2,0,0,6,5,5,4,6,7,7,6,4,
%U A097672 3,3,1,5,6,4,6,0,8,4,8,1,1,5,4,4,3,9,9,7,3,9,5,5,1,5,6,0,8,7,7,8,8,4,6,6,7
%N A097672 Decimal expansion of the constant 6*exp(psi(5/6) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.
%C A097672 This constant appears in _Benoit Cloitre_'s generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-6 linear recursions with varying coefficients (see A097681 for example).
%D A097672 A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
%H A097672 G. C. Greubel, <a href="/A097672/b097672.txt">Table of n, a(n) for n = 1..2500</a>
%H A097672 Benoit Cloitre, <a href="/A097679/a097679.pdf">On a generalization of Euler-Gauss formula for the Gamma function</a>, preprint 2004.
%H A097672 Xavier Gourdon and Pascal Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/gammaFunction.html">Introduction to the Gamma Function</a>.
%H A097672 Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf">Asymptotic enumeration methods</a>, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
%F A097672 c = 1/sqrt(12)*exp(Pi/2*sqrt(3)).
%e A097672 c = 4.38524598625080817369948994322956207765080128500902763042006...
%t A097672 RealDigits[1/Sqrt[12]*E^(Pi/2Sqrt[3]), 10, 105][[1]] (* _Robert G. Wilson v_, Aug 27 2004 *)
%o A097672 (PARI) 6*exp(psi(5/6)+Euler)
%Y A097672 Cf. A097663-A097671, A097673-A097676.
%K A097672 cons,nonn
%O A097672 1,1
%A A097672 _Paul D. Hanna_, Aug 25 2004
%E A097672 More terms from _Robert G. Wilson v_, Aug 27 2004