cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097674 Decimal expansion of the constant 8*exp(psi(3/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

This page as a plain text file.
%I A097674 #19 Feb 27 2021 13:20:38
%S A097674 9,0,7,2,4,5,8,1,7,8,8,2,1,6,4,6,0,7,5,3,8,7,9,4,5,2,4,7,9,2,0,8,1,2,
%T A097674 1,3,7,8,7,7,7,5,2,5,4,2,3,5,8,7,4,9,5,9,0,6,8,7,1,8,5,3,7,9,4,1,1,7,
%U A097674 5,9,2,2,5,6,2,2,2,4,4,6,9,0,5,4,4,4,2,7,0,6,8,3,1,3,0,4,9,1,8,7,8,8,7,0,9
%N A097674 Decimal expansion of the constant 8*exp(psi(3/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.
%C A097674 This constant appears in _Benoit Cloitre_'s generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).
%D A097674 A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
%H A097674 G. C. Greubel, <a href="/A097674/b097674.txt">Table of n, a(n) for n = 0..2500</a>
%H A097674 Benoit Cloitre, <a href="/A097679/a097679.pdf">On a generalization of Euler-Gauss formula for the Gamma function</a>, preprint 2004.
%H A097674 Xavier Gourdon and Pascal Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/gammaFunction.html">Introduction to the Gamma Function</a>.
%H A097674 Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf">Asymptotic enumeration methods</a>, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
%F A097674 c = (1+sqrt(2))^(sqrt(2))/2*exp(-Pi/2*(sqrt(2)-1)).
%e A097674 c = 0.90724581788216460753879452479208121378777525423587495906871...
%t A097674 RealDigits[(1 + Sqrt[2])^(Sqrt[2])/2E^(-Pi/2*(Sqrt[2] - 1)), 10, 105][[1]] (* _Robert G. Wilson v_, Aug 27 2004 *)
%o A097674 (PARI) 8*exp(psi(3/8)+Euler)
%Y A097674 Cf. A097663-A097673, A097675-A097676.
%K A097674 cons,nonn
%O A097674 0,1
%A A097674 _Paul D. Hanna_, Aug 25 2004
%E A097674 More terms from _Robert G. Wilson v_, Aug 27 2004