This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097682 #14 Feb 16 2025 08:32:54 %S A097682 1,8,64,512,4096,32768,262144,2097152,16817536,137443328,1215668224, %T A097682 13131579392,186802241536,3194809745408,57299125141504, %U A097682 1002518381330432,16747075923705856,268695698674024448,4294396462470529024 %N A097682 E.g.f.: (1/(1-x^8))*exp( 8*sum_{i>=0} x^(8*i+1)/(8*i+1) ) for an order-8 linear recurrence with varying coefficients. %C A097682 Limit_{n->inf} n*n!/a(n) = 8*c = 0.0259289826... where c = 8*exp(psi(1/8)+EulerGamma) = 0.0032411228...(A097673) and EulerGamma is the Euler-Mascheroni constant (A001620) and psi() is the Digamma function (see Mathworld link). %D A097682 Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185. %D A097682 A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138. %H A097682 Benoit Cloitre, <a href="/A097679/a097679.pdf">On a generalization of Euler-Gauss formula for the Gamma function</a>, Preprint 2004. %H A097682 Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf">Asymptotic enumeration methods</a>, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229. %H A097682 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>. %F A097682 For n>=8: a(n) = 8*a(n-1) + n!/(n-8)!*a(n-8); for n<8: a(n)=8^n. E.g.f.: 1/(1-x^8)*(1+x)/(1-x)* ((1+sqrt(2)*x+x^2)/(1-sqrt(2)*x+x^2))^(1/sqrt(2))* exp(sqrt(2)*atan(sqrt(2)*x/(1-x^2))+2*atan(x)). %e A097682 The sequence {1, 8, 64/2!, 512/3!, 4096/4!, 32768/5!, 262144/6!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link). %o A097682 (PARI) {a(n)=n!*polcoeff(1/(1-x^8)*exp(8*sum(i=0,n,x^(8*i+1)/(8*i+1)))+x*O(x^n),n)} %o A097682 (PARI) a(n)=if(n<0,0,if(n==0,1,8*a(n-1)+if(n<8,0,n!/(n-8)!*a(n-8)))) %Y A097682 Cf. A097673, A097677-A097681. %K A097682 nonn %O A097682 0,2 %A A097682 _Paul D. Hanna_, Sep 01 2004