This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097705 #24 Feb 23 2024 07:29:13 %S A097705 1,4,33,200,1361,8844,58513,384400,2532321,16664084,109705793, %T A097705 722112600,4753448881,31289709724,205967469873,1355794944800, %U A097705 8924626767041,58747021129764,386706739558753,2545526317441000 %N A097705 a(n) = 4*a(n-1) + 17*a(n-2), a(1)=1, a(2)=4. %C A097705 This is one of only two Lucas-type sequences whose 8th term is a square. %C A097705 The other one is A006131. - _Michel Marcus_, Dec 07 2012 %H A097705 A. Bremner and N. Tzanakis, <a href="http://www.arXiv.org/abs/math.NT/0408371">Lucas sequences whose 8th term is a square</a> %H A097705 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,17). %F A097705 G.f.: 1/(1-4x-17x^2). %p A097705 f:= gfun:-rectoproc({a(n) = 4*a(n-1) + 17*a(n-2), a(1)=1, a(2)=4}, a(n), remember): map(f, [$0..20]); # _Georg Fischer_, Jun 18 2021 %o A097705 (Maxima) %o A097705 a[0]:0$ %o A097705 a[1]:1$ %o A097705 a[n]:=4*a[n-1] + 17*a[n-2]$ %o A097705 A097705(n):=a[n]$ %o A097705 makelist(A097705(n),n,1,30); /* _Martin Ettl_, Nov 03 2012 */ %Y A097705 Cf. A006131. %K A097705 nonn,easy %O A097705 1,2 %A A097705 _Ralf Stephan_, Aug 27 2004 %E A097705 Definition adapted to offset by _Georg Fischer_, Jun 18 2021