This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097713 #11 Feb 22 2024 09:09:00 %S A097713 1,3,8,25,111,809,10360,236952,9708797,714862984,95000655195, %T A097713 22902964060238,10070812803900694,8120691251242651341, %U A097713 12070960239863869828931,33238610095183531376362138 %N A097713 Column 1 of triangle A097712. %C A097713 Partial sums of A016121. %C A097713 The row sums of triangle A097712 give A016121. %H A097713 G. C. Greubel, <a href="/A097713/b097713.txt">Table of n, a(n) for n = 0..85</a> %F A097713 a(n) = Sum_{k=0..n} A016121(k). %t A097713 T[n_, k_]:= T[n, k]= If[n<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] + Sum[T[n-1,j]*T[j,k-1], {j,0,n-1}] ]]; (* T=A097712 *) %t A097713 A097713[n_]:= T[n,1]; %t A097713 Table[A097713[n], {n,30}] (* _G. C. Greubel_, Feb 22 2024 *) %o A097713 (SageMath) %o A097713 @CachedFunction %o A097713 def T(n, k): # T = A097712 %o A097713 if k<0 or k>n: return 0 %o A097713 elif k==0 or k==n: return 1 %o A097713 else: return T(n-1, k) + sum(T(n-1, j)*T(j, k-1) for j in range(n)) %o A097713 def A097713(n): return T(n,1) %o A097713 [A097713(n) for n in range(1,31)] # _G. C. Greubel_, Feb 22 2024 %Y A097713 Cf. A016121, A097712. %K A097713 nonn %O A097713 0,2 %A A097713 _Paul D. Hanna_, Aug 24 2004