This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097725 #22 Jan 01 2021 03:33:19 %S A097725 1,102,10403,1061004,108212005,11036563506,1125621265607, %T A097725 114802332528408,11708712296632009,1194173851923936510, %U A097725 121794024183944892011,12421796292910455048612,1266901427852682470066413,129211523844680701491725514,13178308530729578869685936015 %N A097725 Chebyshev U(n,x) polynomial evaluated at x=51. %C A097725 Used to form integer solutions of Pell equation a^2 - 26*b^2 =-1. See A097726 with A097727. %H A097725 Indranil Ghosh, <a href="/A097725/b097725.txt">Table of n, a(n) for n = 0..496</a> %H A097725 Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. %H A097725 R. Flórez, R. A. Higuita, and A. Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mukherjee/mukh2.html">Alternating Sums in the Hosoya Polynomial Triangle</a>, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). %H A097725 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097725 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A097725 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (102,-1). %F A097725 a(n) = 102*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0. %F A097725 a(n) = S(n, 2*51)= U(n, 51), Chebyshev's polynomials of the second kind. See A049310. %F A097725 G.f.: 1/(1-102*x+x^2). %F A097725 a(n)= sum((-1)^k*binomial(n-k, k)*102^(n-2*k), k=0..floor(n/2)), n>=0. %F A097725 a(n) = ((51+10*sqrt(26))^(n+1) - (51-10*sqrt(26))^(n+1))/(20*sqrt(26)). %t A097725 ChebyshevU[Range[0,20],51] (* _Harvey P. Dale_, Oct 08 2012 *) %t A097725 LinearRecurrence[{102, -1},{1, 102},15] (* _Ray Chandler_, Aug 11 2015 *) %K A097725 nonn,easy %O A097725 0,2 %A A097725 _Wolfdieter Lang_, Aug 31 2004 %E A097725 More terms from _Harvey P. Dale_, Oct 08 2012