This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097729 #38 Aug 29 2024 21:11:38 %S A097729 1,147,21461,3133159,457419753,66780150779,9749444593981, %T A097729 1423352130570447,207799661618691281,30337327244198356579, %U A097729 4429041977991341369253,646609791459491641554359,94400600511107788325567161,13781841064830277603891251147,2012054394864709422379797100301 %N A097729 Pell equation solutions (6*a(n))^2 - 37*b(n)^2 = -1 with b(n):=A097730(n), n >= 0. %H A097729 Indranil Ghosh, <a href="/A097729/b097729.txt">Table of n, a(n) for n = 0..461</a> %H A097729 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097729 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16. %H A097729 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A097729 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (146,-1). %F A097729 G.f.: (1 + x)/(1 - 2*73*x + x^2). %F A097729 a(n) = S(n, 2*73) + S(n-1, 2*73) = S(2*n, 2*sqrt(37)), with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x). %F A097729 a(n) = ((-1)^n)*T(2*n+1, 6*i)/(6*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120. %F A097729 a(n) = 146*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=147. - _Philippe Deléham_, Nov 18 2008 %F A097729 a(n) = (1/6)*sinh((2*n + 1)*arcsinh(6)). - _Bruno Berselli_, Apr 03 2018 %e A097729 (x,y) = (6,1), (882,145), (128766,21169), ... give the positive integer solutions to x^2 - 37*y^2 =-1. %t A097729 LinearRecurrence[{146, -1}, {1, 147}, 20] (* _Harvey P. Dale_, Sep 24 2012 *) %o A097729 (PARI) x='x+O('x^99); Vec((1+x)/(1-2*73*x+x^2)) \\ _Altug Alkan_, Apr 05 2018 %Y A097729 Cf. A097728 for S(n, 2*73). %Y A097729 Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775. %K A097729 nonn,easy %O A097729 0,2 %A A097729 _Wolfdieter Lang_, Aug 31 2004 %E A097729 a(12)-a(13) from _Harvey P. Dale_, Sep 24 2012