This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097737 #14 Feb 06 2017 08:44:35 %S A097737 1,326,106275,34645324,11294269349,3681897162450,1200287180689351, %T A097737 391289939007565976,127559319829285818825,41583946974408169370974, %U A097737 13556239154337233929118699,4419292380366963852723324900 %N A097737 Chebyshev U(n,x) polynomial evaluated at x=163. %C A097737 Used to form integer solutions of Pell equation a^2 - 82*b^2 =-1. See A097738 with A097739. %H A097737 Indranil Ghosh, <a href="/A097737/b097737.txt">Table of n, a(n) for n = 0..397</a> %H A097737 R. Flórez, R. A. Higuita, A. Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mukherjee/mukh2.html">Alternating Sums in the Hosoya Polynomial Triangle</a>, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). %H A097737 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097737 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A097737 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (326, -1). %F A097737 a(n) = 2*163*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0. %F A097737 a(n) = S(n, 2*163)= U(n, 163), Chebyshev's polynomials of the second kind. See A049310. %F A097737 a(n) = ((129+16*sqrt(65))^(n+1) - (129-16*sqrt(65))^(n+1))/(32*sqrt(65)), n>=0. %F A097737 a(n)= sum((-1)^k*binomial(n-k, k)*326^(n-2*k), k=0..floor(n/2)), n>=0. %F A097737 G.f.: 1/(1-326*x+x^2). %F A097737 a(n) = ((163+18*sqrt(82))^(n+1) - (163-18*sqrt(82))^(n+1))/(36*sqrt(82)), n>=0. %t A097737 LinearRecurrence[{326, -1},{1, 326},12] (* _Ray Chandler_, Aug 11 2015 *) %K A097737 nonn,easy %O A097737 0,2 %A A097737 _Wolfdieter Lang_, Aug 31 2004