This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097740 #14 Feb 06 2017 08:44:45 %S A097740 1,402,161603,64964004,26115368005,10498312974006,4220295700182407, %T A097740 1696548373160353608,682008225714761968009,274165610188961150786010, %U A097740 110213893287736667854008011,44305710936059951516160434412 %N A097740 Chebyshev U(n,x) polynomial evaluated at x=201. %C A097740 Used to form integer solutions of Pell equation a^2 - 101*b^2 =-1. See A097741 with A097742. %H A097740 Indranil Ghosh, <a href="/A097740/b097740.txt">Table of n, a(n) for n = 0..383</a> %H A097740 R. Flórez, R. A. Higuita, A. Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mukherjee/mukh2.html">Alternating Sums in the Hosoya Polynomial Triangle</a>, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). %H A097740 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097740 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A097740 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (402, -1). %F A097740 a(n) = 2*201*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0. %F A097740 a(n) = S(n, 2*201)= U(n, 201), Chebyshev's polynomials of the second kind. See A049310. %F A097740 G.f.: 1/(1-402*x+x^2). %F A097740 a(n)= sum((-1)^k*binomial(n-k, k)*402^(n-2*k), k=0..floor(n/2)), n>=0. %F A097740 a(n) = ((201+20*sqrt(101))^(n+1) - (201-20*sqrt(101))^(n+1))/(40*sqrt(101)), n>=0. %t A097740 LinearRecurrence[{402, -1},{1, 402},12] (* _Ray Chandler_, Aug 11 2015 *) %K A097740 nonn,easy %O A097740 0,2 %A A097740 _Wolfdieter Lang_, Aug 31 2004