This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097778 #46 Apr 26 2023 17:37:45 %S A097778 1,23,528,12121,278255,6387744,146639857,3366328967,77278926384, %T A097778 1774048977865,40725847564511,934920445005888,21462444387570913, %U A097778 492701300469125111,11310667466402306640,259652650426783927609 %N A097778 Chebyshev polynomials S(n,23) with Diophantine property. %C A097778 All positive integer solutions of Pell equation b(n)^2 - 525*a(n)^2 = +4 together with b(n)=A090731(n+1), n>=0. Note that D=525=21*5^2 is not squarefree. %C A097778 For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 23's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - _John M. Campbell_, Jul 08 2011 %C A097778 For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,22}. - _Milan Janjic_, Jan 25 2015 %H A097778 Indranil Ghosh, <a href="/A097778/b097778.txt">Table of n, a(n) for n = 0..733</a> %H A097778 R. Flórez, R. A. Higuita, A. Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mukherjee/mukh2.html">Alternating Sums in the Hosoya Polynomial Triangle</a>, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). %H A097778 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097778 <a href="/index/Ch#Cheby">Index entries for sequences relate d to Chebyshev polynomials.</a> %H A097778 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (23,-1). %F A097778 a(n) = S(n, 23) = U(n, 23/2) = S(2*n+1, 5)/5 with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 5) = A004254(n+1). %F A097778 a(n) = 23*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=23; a(-1)=0. %F A097778 a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (23+5*sqrt(21))/2 and am := (23-5*sqrt(21))/2. %F A097778 G.f.: 1/(1-23*x+x^2). %F A097778 a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*22^k. - _Philippe Deléham_, Feb 10 2012 %F A097778 Product {n >= 0} (1 + 1/a(n)) = 1/21*(21 + 5*sqrt(21)). - _Peter Bala_, Dec 23 2012 %F A097778 Product {n >= 1} (1 - 1/a(n)) = 1/46*(21 + 5*sqrt(21)). - _Peter Bala_, Dec 23 2012 %e A097778 (x,y) = (23;1), (527;23), (12098;528), ... give the positive integer solutions to x^2 - 21*(5*y)^2 =+4. %t A097778 LinearRecurrence[{23,-1},{1,23},20] (* _Harvey P. Dale_, May 06 2016 *) %o A097778 (Sage) [lucas_number1(n,23,1) for n in range(1,20)] # _Zerinvary Lajos_, Jun 25 2008 %Y A097778 A004254, A049310. %K A097778 nonn,easy %O A097778 0,2 %A A097778 _Wolfdieter Lang_, Aug 31 2004