cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097779 Number of Motzkin paths of length n, starting with an up step, ending with a down step and having no peaks (can be easily expressed using RNA secondary structure terminology).

This page as a plain text file.
%I A097779 #8 Jul 26 2022 12:39:50
%S A097779 1,0,0,1,1,2,5,11,25,58,135,317,750,1785,4272,10275,24823,60210,
%T A097779 146576,358010,877087,2154751,5307166,13102511,32418806,80375267,
%U A097779 199650310,496803811,1238276667,3091173482,7727893389,19346109435,48493869237
%N A097779 Number of Motzkin paths of length n, starting with an up step, ending with a down step and having no peaks (can be easily expressed using RNA secondary structure terminology).
%F A097779 G.f. = z + (1-z)^2*[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2)
%F A097779 D-finite with recurrence (n+2)*a(n) -3*n*a(n-1) +(n-4)*a(n-2) +(-n+1)*a(n-3) +3*(n-5)*a(n-4) +(-n+7)*a(n-5)=0. - _R. J. Mathar_, Jul 26 2022
%e A097779 a(6)=5 because we have UHHHHD, UHDUHD, UUHHDD, UHUHDD and UUHDHD, where U=(1,1), D=(1,-1) and H=(1,0).
%p A097779 G:=z+1/2*(1-z)^2/z^2*(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4)): Gser:=series(G,z=0,40): 1,seq(coeff(Gser,z^n),n=1..37);
%t A097779 CoefficientList[Series[x+(1-x)^2 (1-x+x^2-Sqrt[1-2x-x^2-2x^3+x^4])/(2x^2),{x,0,40}],x] (* _Harvey P. Dale_, Dec 24 2016 *)
%Y A097779 Cf. A004148.
%K A097779 nonn
%O A097779 0,6
%A A097779 _Emeric Deutsch_, Sep 11 2004