cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097788 a(n)=4a(n-1)+C(n+3,3),n>0, a(0)=1.

This page as a plain text file.
%I A097788 #10 Jun 13 2015 00:51:30
%S A097788 1,8,42,188,787,3204,12900,51720,207045,828400,3313886,13255908,
%T A097788 53024087,212096908,848388312,3393554064,13574217225,54296870040,
%U A097788 217187481490,868749927500,3474999711771,13899998849108,55599995398732
%N A097788 a(n)=4a(n-1)+C(n+3,3),n>0, a(0)=1.
%C A097788 Partial sums of A052161.
%H A097788 Harvey P. Dale, <a href="/A097788/b097788.txt">Table of n, a(n) for n = 0..1000</a>
%H A097788 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,28,-17,4).
%F A097788 G.f.: 1/((1-4x)(1-x)^4); a(n)=4^(n+4)/81-(9n^3+90n^2+303n+350)/162; a(n)=sum{k=0..n, binomial(n+4, k+4)3^k}.
%F A097788 a(0)=1, a(1)=8, a(2)=42, a(3)=188, a(4)=787, a(n)=8*a(n-1)- 22*a(n-2)+ 28*a(n-3)- 17*a(n-4)+4*a(n-5). - _Harvey P. Dale_, May 04 2014
%t A097788 RecurrenceTable[{a[0]==1,a[n]==4a[n-1]+Binomial[n+3,3]},a,{n,30}] (* or *) LinearRecurrence[{8,-22,28,-17,4},{1,8,42,188,787},30] (* _Harvey P. Dale_, May 04 2014 *)
%K A097788 easy,nonn
%O A097788 0,2
%A A097788 _Paul Barry_, Aug 24 2004