cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097793 McKay-Thompson series of class 56B for the Monster group.

This page as a plain text file.
%I A097793 #28 Jan 21 2017 17:57:21
%S A097793 1,1,1,2,2,3,4,4,5,7,8,10,12,14,17,21,24,28,34,39,46,53,61,71,82,94,
%T A097793 108,124,142,162,185,210,238,271,306,345,390,439,494,556,623,698,783,
%U A097793 875,977,1092,1216,1354,1508,1674,1859,2064,2286,2532,2803,3098,3424
%N A097793 McKay-Thompson series of class 56B for the Monster group.
%C A097793 Number of partitions of n into distinct parts not divisible by 7.
%C A097793 Also McKay-Thompson series of class 56C for Monster. - _Michel Marcus_, Feb 19 2014
%H A097793 Alois P. Heinz, <a href="/A097793/b097793.txt">Table of n, a(n) for n = 0..10000</a>
%H A097793 D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H A097793 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
%H A097793 <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F A097793 Euler transform of period 14 sequence [ 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, ...].
%F A097793 Expansion of q^(1/4) * eta(q^2) * eta(q^7) / (eta(q) * eta(q^14)) in powers of q.
%F A097793 G.f.: Product_{k>0} (1 + x^k) / (1 + x^(7*k)).
%F A097793 a(n) ~ exp(Pi*sqrt(2*n/7)) / (2 * 14^(1/4) * n^(3/4)) * (1 - (3*sqrt(7)/ (8*Pi*sqrt(2)) + Pi/(4*sqrt(14))) / sqrt(n)). - _Vaclav Kotesovec_, Aug 31 2015, extended Jan 21 2017
%e A097793 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 +...
%e A097793 T56B = 1/q + q^3 + q^7 + 2q^11 + 2q^15 + 3q^19 + 4q^23 + 4q^27 +...
%t A097793 nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(7*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 31 2015 *)
%t A097793 QP = QPochhammer; s = QP[q^2]*(QP[q^7]/(QP[q]*QP[q^14])) + O[q]^60; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 12 2015 *)
%o A097793 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod( k=1, n, 1 + x^k, 1 + A) / prod( k=1, n\7, 1 + x^(7*k), 1 + A), n))}
%o A097793 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^7 + A) / (eta(x + A) * eta(x^14 + A)), n))}
%Y A097793 Cf. A113297.
%Y A097793 Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A261771 (m=8), A112193 (m=9), A261772 (m=10).
%K A097793 nonn
%O A097793 0,4
%A A097793 _Michael Somos_, Aug 24 2004