This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097796 #17 Feb 16 2025 08:32:54 %S A097796 0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1, %T A097796 0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, %U A097796 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0 %N A097796 Number of partitions of n into perfect numbers. %C A097796 a(2*n) = A097795(n). %C A097796 a(A204878(n)) = 0; a(A204879(n)) > 0. %H A097796 Reinhard Zumkeller, <a href="/A097796/b097796.txt">Table of n, a(n) for n = 1..10000</a> %H A097796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectNumber.html">Perfect Number</a> %H A097796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Partition.html">Partition</a> %H A097796 Wikipedia, <a href="http://www.wikipedia.org/wiki/Perfect_number">Perfect number</a> %e A097796 a(90)=2: 90 = 15*6 = 15*A000396(1) = 3*28 + 1*6 = 3*A000396(2) + 1*A000396(1). %t A097796 f[x_] := Product[-(1/(-1 + x^i)), {i, {6, 28, 496, 8128, 33550336}}]; CoefficientList[Series[f[x], {x, 0, 1000}], x] (* _Ben Branman_, Jan 07 2012 *) %o A097796 (Haskell) %o A097796 a097796 = p a000396_list where %o A097796 p _ 0 = 1 %o A097796 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A097796 -- _Reinhard Zumkeller_, Jan 20 2012 %Y A097796 Cf. A000396, A000041, A058696, A080225. %K A097796 nonn %O A097796 1,84 %A A097796 _Reinhard Zumkeller_, Aug 25 2004