This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097806 #42 Sep 08 2022 08:45:14 %S A097806 1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0, %T A097806 1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0, %U A097806 0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1 %N A097806 Riordan array (1+x, 1) read by rows. %C A097806 Pair sum operator. Columns have g.f. (1+x)*x^k. Row sums are A040000. Diagonal sums are (1,1,1,....). Riordan inverse is (1/(1+x), 1). A097806 = B*A059260^(-1), where B is the binomial matrix. %C A097806 Triangle T(n,k), 0<=k<=n, read by rows given by [1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, May 01 2007 %C A097806 Table T(n,k) read by antidiagonals. T(n,1) = 1, T(n,2) = 1, T(n,k) = 0, k > 2. - _Boris Putievskiy_, Jan 17 2013 %H A097806 Michael De Vlieger, <a href="/A097806/b097806.txt">Table of n, a(n) for n = 0..10010</a> (Rows 0 <= n <= 140) %H A097806 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %F A097806 T(n, k) = if(n=k or n-k=1, 1, 0). %F A097806 a(n) = A103451(n+1). - _Philippe Deléham_, Oct 16 2007 %F A097806 From _Boris Putievskiy_, Jan 17 2013: (Start) %F A097806 a(n) = floor((A002260(n)+2)/(A003056(n)+2)), n > 0. %F A097806 a(n) = floor((i+2)/(t+2)), n > 0, %F A097806 where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End) %F A097806 G.f.: (1+x)/(1-x*y). - _R. J. Mathar_, Aug 11 2015 %e A097806 Rows begin {1}, {1,1}, {0,1,1}, {0,0,1,1}... %e A097806 From _Boris Putievskiy_, Jan 17 2013: (Start) %e A097806 The start of the sequence as table: %e A097806 1..1..0..0..0..0..0... %e A097806 1..1..0..0..0..0..0... %e A097806 1..1..0..0..0..0..0... %e A097806 1..1..0..0..0..0..0... %e A097806 1..1..0..0..0..0..0... %e A097806 1..1..0..0..0..0..0... %e A097806 1..1..0..0..0..0..0... %e A097806 . . . %e A097806 The start of the sequence as triangle array read by rows: %e A097806 1; %e A097806 1, 1; %e A097806 0, 1, 1; %e A097806 0, 0, 1, 1; %e A097806 0, 0, 0, 1, 1; %e A097806 0, 0, 0, 0, 1, 1; %e A097806 0, 0, 0, 0, 0, 1, 1; %e A097806 0, 0, 0, 0, 0, 0, 1, 1; . . . %e A097806 Row number r (r>4) contains (r-2) times '0' and 2 times '1'. (End) %p A097806 A097806 := proc(n,k) %p A097806 if k =n or k=n-1 then %p A097806 1; %p A097806 else %p A097806 0; %p A097806 end if; %p A097806 end proc: # _R. J. Mathar_, Jun 20 2015 %t A097806 Table[Boole[n <= # <= n+1] & /@ Range[n+1], {n, 0, 15}] // Flatten (* or *) %t A097806 Table[Floor[(# +2)/(n+2)] & /@ Range[n+1], {n, 0, 15}] // Flatten (* _Michael De Vlieger_, Jul 21 2016 *) %o A097806 (PARI) T(n, k) = if(k==n || k==n-1, 1, 0); \\ _G. C. Greubel_, Jul 11 2019 %o A097806 (Magma) [k eq n or k eq n-1 select 1 else 0: k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jul 11 2019 %o A097806 (Sage) %o A097806 def T(n, k): %o A097806 if (k==n or k==n-1): return 1 %o A097806 else: return 0 %o A097806 [[T(n, k) for k in (0..n)] for n in (0..15)] # _G. C. Greubel_, Jul 11 2019 %K A097806 easy,nonn,tabl %O A097806 0,1 %A A097806 _Paul Barry_, Aug 25 2004