This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097807 #17 Jul 20 2019 12:33:39 %S A097807 1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1, %T A097807 -1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1, %U A097807 -1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1 %N A097807 Riordan array (1/(1+x),1) read by rows. %C A097807 Columns have g.f. x^k/(1+x). %C A097807 Row sums are A059841. Diagonal sums are (-1)^n*A008619 with g.f. 1/((1+x)(1-x^2)). %C A097807 Inverse of A097806. Equals B^(-1)*A097805, where B is the binomial matrix. %F A097807 Triangle array of numbers T(n, k) with T(n, k)=if(n>=k, (-1)^(n-k), 0). %F A097807 T(n+1,0) = -T(n,0), T(n+1,k+1) = T(n,k) for k = 1..n. - _Reinhard Zumkeller_, Sep 17 2014 %e A097807 Rows begin %e A097807 1; %e A097807 -1,1; %e A097807 1,-1,1; %e A097807 -1,1,-1,1; %e A097807 1,-1,1,-1,1; %t A097807 (* The function RiordanArray is defined in A256893. *) %t A097807 rows = 12; %t A097807 R = RiordanArray[1/(1 + #)&, #&, rows]; %t A097807 R // Flatten (* _Jean-François Alcover_, Jul 20 2019 *) %o A097807 (Haskell) %o A097807 a097807 n k = a097807_tabl !! n !! k %o A097807 a097807_row n = a097807_tabl !! n %o A097807 a097807_tabl = iterate(\xs@(x:_) -> - x : xs) [1] %o A097807 -- _Reinhard Zumkeller_, Sep 17 2014 %Y A097807 Cf. A008619, A059841, A097805, A097806. %K A097807 easy,sign,tabl %O A097807 0,1 %A A097807 _Paul Barry_, Aug 25 2004