cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097812 Numbers n such that n^2 is the sum of two or more consecutive positive squares.

This page as a plain text file.
%I A097812 #23 Dec 18 2015 11:57:28
%S A097812 5,29,70,77,92,106,138,143,158,169,182,195,245,253,274,357,385,413,
%T A097812 430,440,495,531,650,652,655,679,724,788,795,985,1012,1022,1055,1133,
%U A097812 1281,1365,1397,1518,1525,1529,1546,1599,1612,1786,1828,2205,2222,2257,2372
%N A097812 Numbers n such that n^2 is the sum of two or more consecutive positive squares.
%C A097812 These numbers were found by exhaustive search. The sums are not unique; for n = 143, there are two representations. The Mathematica code prints n, the range of squares in the sum and the number of squares in the sum. Because the search included sums of all squares up to 2000, this sequence is complete up to 2828.
%H A097812 Donovan Johnson, <a href="/A097812/b097812.txt">Table of n, a(n) for n = 1..5077</a>
%H A097812 K. S. Brown, <a href="http://www.mathpages.com/home/kmath147.htm">Sum of Consecutive Nth Powers Equals an Nth Power</a>
%H A097812 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%e A097812 29 is in this sequence because 20^2 + 21^2 = 29^2.
%e A097812 Contribution from _Donovan Johnson_, Feb 19 2011: (Start)
%e A097812 For seven terms < (10^15)^(1/2), the square is a sum in two different ways:
%e A097812 143^2 = 7^2 + ... + 39^2 = 38^2 + ... + 48^2.
%e A097812 2849^2 = 294^2 + ... + 367^2 = 854^2 + ... + 864^2.
%e A097812 208395^2 = 2175^2 + ... + 5199^2 = 29447^2 + ... + 29496^2.
%e A097812 2259257^2 = 9401^2 + ... + 25273^2 = 26181^2 + ... + 32158^2.
%e A097812 6555549^2 = 41794^2 + ... + 58667^2 = 87466^2 + ... + 92756^2.
%e A097812 11818136^2 = 10898^2 + ... + 74906^2 = 29929^2 + ... + 76392^2.
%e A097812 19751043^2 = 39301^2 + ... + 107173^2 = 249217^2 + ... + 255345^2. (End)
%t A097812 g[m0_, m1_] := (1 - m0 + m1)(-m0 + 2m0^2 + m1 + 2m0 m1 + 2m1^2)/6; A097812 = {}; Do[n = g[m0, m1]^(1/2); If[IntegerQ[n], Print[{n, m0, m1, m1 - m0 + 1}]; AppendTo[A097812, n]], {m1, 2, 2000}, {m0, m1 - 1, 1, -1}]; Union[A097812]
%Y A097812 Cf. A097811 (n^3 is the sum of consecutive cubes).
%Y A097812 Cf. A001032, A151557.
%K A097812 nonn
%O A097812 1,1
%A A097812 _T. D. Noe_, Aug 25 2004
%E A097812 Name edited by _Altug Alkan_, Dec 07 2015