This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097841 #40 Jul 29 2025 15:44:36 %S A097841 1,82,6805,564733,46866034,3889316089,322766369353,26785719340210, %T A097841 2222891938868077,184473245206710181,15309056460218076946, %U A097841 1270467212952893676337,105433469618629957059025 %N A097841 First differences of Chebyshev polynomials S(n,83) = A097839(n) with Diophantine property. %C A097841 (9*b(n))^2 - 85*a(n)^2 = -4 with b(n)=A097840(n) give all positive solutions of this Pell equation. %C A097841 For n > 0, a(n) is the hypotenuse of the Pythagorean triple (x(n), y(n), a(n)) that is primitive for n == 0, 2 (mod 3) where (x(n)) and (y(n)) are recurrences of the form (82,82,-1) with the initial values x(0) = 1, x(1) = 80, x(2) = 6643; y(0) = 0, y(1) = 18, y(2) = 1476. - _Klaus Purath_, Jul 19 2025 %H A097841 Indranil Ghosh, <a href="/A097841/b097841.txt">Table of n, a(n) for n = 0..520</a> %H A097841 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A097841 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16. %H A097841 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (83, -1). %H A097841 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A097841 a(n) = ((-1)^n)*S(2*n, 9*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials. %F A097841 G.f.: (1-x)/(1 - 83*x + x^2). %F A097841 a(n) = S(n, 83) - S(n-1, 83) = T(2*n+1, sqrt(85)/2)/(sqrt(85)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120. %F A097841 a(n) = 83*a(n-1) - a(n-2) for n > 1, a(0)=1, a(1)=82. - _Philippe Deléham_, Nov 18 2008 %F A097841 From _Klaus Purath_, Jul 19 2025: (Start) %F A097841 a(n) = A099371(2n+1) = A099371(n)^2 + A099371(n+1)^2. %F A097841 a(n) = (t(i+2*n+1) + t(i))/(t(i+n+1) + t(i+n)) as long as t(i+n+1) + t(i+n) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 82*t(i+2) + 82*t(i+1) - t(i) or t(i+2) = 83*t(i+1) - t(i) regardless of initial values and including this sequence itself. (End) %e A097841 All positive solutions of Pell equation x^2 - 85*y^2 = -4 are (9=9*1,1), (756=9*84,82), (62739=9*6971,6805), (5206581=9*578509,564733), ... %t A097841 CoefficientList[Series[(1-x)/(1-83x+x^2), {x, 0, 20}], x] (* _Michael De Vlieger_, Feb 08 2017 *) %t A097841 LinearRecurrence[{83,-1}, {1,82}, 20] (* _G. C. Greubel_, Jan 13 2019 *) %o A097841 (PARI) my(x='x+O('x^20)); Vec((1-x)/(1-83*x+x^2)) \\ _G. C. Greubel_, Jan 13 2019 %o A097841 (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-83*x+x^2) )); // _G. C. Greubel_, Jan 13 2019 %o A097841 (Sage) ((1-x)/(1-83*x+x^2)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 13 2019 %o A097841 (GAP) a:=[1,82];; for n in [3..20] do a[n]:=83*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 13 2019 %Y A097841 Cf. A097839, A097840. %Y A097841 Cf. A049310, A053120. %Y A097841 Cf. A099371. %K A097841 nonn,easy %O A097841 0,2 %A A097841 _Wolfdieter Lang_, Sep 10 2004