cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097870 Molien series for group of order 4608 acting on joint weight enumerators of a pair of binary doubly-even self-dual codes.

This page as a plain text file.
%I A097870 #22 Sep 08 2022 08:45:14
%S A097870 1,2,4,10,17,27,45,66,92,130,173,223,289,362,444,546,657,779,925,1082,
%T A097870 1252,1450,1661,1887,2145,2418,2708,3034,3377,3739,4141,4562,5004,
%U A097870 5490,5997,6527,7105,7706,8332,9010,9713,10443,11229,12042,12884,13786,14717,15679
%N A097870 Molien series for group of order 4608 acting on joint weight enumerators of a pair of binary doubly-even self-dual codes.
%C A097870 This is the Molien series for the group of order 128 discussed in A097869 extended by the extra generator diag{1,1,i,i}. This group was not considered in the reference cited.
%C A097870 The first g.f. inserts zeros between each pair of terms; the second g.f. does not. - _Colin Barker_, Feb 12 2015
%H A097870 Colin Barker, <a href="/A097870/b097870.txt">Table of n, a(n) for n = 0..1000</a>
%H A097870 F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, <a href="http://neilsloane.com/doc/gleason2.html">Generalizations of Gleason's theorem on weight enumerators of self-dual codes</a>, IEEE Trans. Inform. Theory, 18 (1972), 794-805.
%H A097870 <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H A097870 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-4,2,-1,2,-1).
%F A097870 G.f.: (1 + x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7)/(1 - 2*x + x^2 - 2*x^3 +
%F A097870    4*x^4 - 2*x^5 + x^6 - 2*x^7 + x^8).
%F A097870 G.f.: (1+x)*(1-x+x^2)*(1+x^2+x^3+x^4) / ((1-x)^4*(1+x+x^2)^2). - _Colin Barker_, Feb 12 2015
%p A097870 m:=50; S:=series((1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, x, m+1): seq(coeff(S, x, j), j=0..m); # _G. C. Greubel_, Feb 05 2020
%t A097870 CoefficientList[Series[(1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, {x,0,50}], x] (* _G. C. Greubel_, Feb 05 2020 *)
%t A097870 LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,2,4,10,17,27,45,66},50] (* _Harvey P. Dale_, Jun 11 2022 *)
%o A097870 (PARI) Vec((x+1)*(x^2-x+1)*(x^4+x^3+x^2+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, Feb 12 2015
%o A097870 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 )); // _G. C. Greubel_, Feb 05 2020
%o A097870 (Sage)
%o A097870 def A097870_list(prec):
%o A097870     P.<x> = PowerSeriesRing(ZZ, prec)
%o A097870     return P( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 ).list()
%o A097870 A097870_list(50) # _G. C. Greubel_, Feb 05 2020
%Y A097870 Cf. A097869.
%K A097870 nonn,easy
%O A097870 0,2
%A A097870 _N. J. A. Sloane_, Sep 02 2004