A097898 Triangle read by rows: T(n,k) is the number of permutations of [n] with k runs of length 1. For example, 457/3/26/1 has two runs of length 1: 3 and 1.
1, 0, 1, 1, 0, 1, 1, 4, 0, 1, 6, 6, 11, 0, 1, 19, 51, 23, 26, 0, 1, 109, 212, 269, 72, 57, 0, 1, 588, 1571, 1419, 1140, 201, 120, 0, 1, 4033, 10470, 13343, 7432, 4272, 522, 247, 0, 1, 29485, 87672, 107853, 87552, 33683, 14841, 1291, 502, 0, 1, 246042, 763612
Offset: 0
Examples
Triangle starts: 1; 0,1; 1,0,1; 1,4,0,1; 6,6,11,0,1; 19,51,23,26,0,1 Row n has n+1 terms. T(3,0)=1, T(3,1)=4, T(3,2)=0 and T(3,3)=1 because we have 123, 13(2), (2)13, 23(1), (3)12, (3)(2)(1), the runs of length 1 being shown between parentheses.
References
- Ira. M. Gessel, Generating functions and enumeration of sequences, Ph. D. Thesis, MIT, 1977.
Programs
-
Maple
A:=(1-t)/2: B:=sqrt(t^2+2*t-3)/2: G:=B/exp(A*z)/(A*sinh(B*z)+B*cosh(B*z)-sinh(B*z)): Gserz:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(n!*coeff(Gserz,z^n)) od: seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..10);
Formula
E.g.f.: Bexp(-Ax)/[A*sinh(Bx)+B*cosh(Bx)-sinh(Bx)], where A=(1-t)/2 and B=(1/2)sqrt(t^2+2t-3).