cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097914 Number of points in a certain complex manifold associated with the Hilbert modular group of the totally real field Q(sqrt(n)), n squarefree, that arise from isotropy groups of order 2.

This page as a plain text file.
%I A097914 #8 Apr 28 2019 20:10:59
%S A097914 1,2,3,2,6,4,6,10,2,12,8,4,10,4,6,12,18,6,12,12,4,12,20,2,18,16,8
%N A097914 Number of points in a certain complex manifold associated with the Hilbert modular group of the totally real field Q(sqrt(n)), n squarefree, that arise from isotropy groups of order 2.
%H A097914 F. Hirzebruch, <a href="http://dx.doi.org/10.5169/seals-46292">Hilbert modular surfaces</a>, L'Enseignement Math., 19 (1973), 183-281; Ges. Abh. II, 225-323.
%H A097914 A. Prestel, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN00229978X">Die elliptischen Fixpunkte der Hilbertschen Modulgruppen</a>, Math. Ann., 177 (1968), 181-209.
%H A097914 A. Prestel, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002307111">Die Fixpunkte der symmetrischen Hilbertschen Modulgruppe zu einem reell-quadratischen Zahlkörper mit Primzahldiskriminante</a>, Math. Ann., 200 (1973), 123-139.
%Y A097914 Cf. A097915, A097916, A097917, A097918.
%K A097914 nonn,more
%O A097914 1,2
%A A097914 _N. J. A. Sloane_, Sep 04 2004