This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097917 #16 Feb 29 2024 08:54:03 %S A097917 6,3,15,1,3,3,3,3,3,1,3,3,3,3,3,3,1,3,3,1,3,3,3,3,3,3,1,1,3,3,1,3,3,3, %T A097917 1,3,3,1,3,3,1,1,3,3,3,1,1,1,1,1,1,1,3,1,3,3,1,3,3,3,3,3,1,1,1,3,1,3, %U A097917 3,1,1,3,3,3,1,1,3,3,3,1,3,3,1,3,1,1,1,3,3,3,3,1,3,3,3,3 %N A097917 Denominator of 2*zeta_K(-1) where K is the totally real field Q(sqrt(n)), as n runs through the squarefree numbers. %D A097917 F. Hirzebruch, Hilbert modular surfaces, Ges. Abh. II, 225-323. %H A097917 F. Hirzebruch, <a href="http://www.maths.ed.ac.uk/~v1ranick/papers/hirzhilb.pdf">Hilbert modular surfaces</a>, L'Enseignement Math., 19 (1973), 183-281. See p. 200. %e A097917 1/6, 1/3, 1/15, 1, 4/3, 7/3, 7/3, 1/3, 10/3, 4, ... %o A097917 (Sage) [(round(60*QuadraticField(d).zeta_function(100)(-1).real())/30).denominator() for d in range(2, 100) if Integer(d).is_squarefree()] # _Robin Visser_, Feb 28 2024 %o A097917 (PARI) %o A097917 z(d) = -(1/2)*bernfrac(2)*d*sum(k=1, d-1, kronecker(d, k)*subst(bernpol(2), x, k/d)*(-1/2)) %o A097917 {v=[]; for(k=2, 100, if(issquarefree(k), my(d=k); if(k%4 <> 1,d = 4*k); v=concat(v, denominator(2*z(d)) ))); v} \\ _Thomas Scheuerle_, Feb 28 2024 %Y A097917 Cf. A097916. %K A097917 nonn,frac %O A097917 1,1 %A A097917 _N. J. A. Sloane_, Sep 04 2004 %E A097917 More terms from _Robin Visser_, Feb 28 2024