cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097939 Sum of the smallest parts of all compositions of n.

This page as a plain text file.
%I A097939 #51 Oct 15 2024 17:13:31
%S A097939 1,3,6,12,22,42,79,151,291,566,1106,2175,4293,8499,16864,33523,66727,
%T A097939 132958,265137,529050,1056169,2109282,4213710,8419697,16827079,
%U A097939 33634489,67237513,134424624,268768414,537407062,1074605619,2148875961,4297212424,8593556211,17185713097,34369170909
%N A097939 Sum of the smallest parts of all compositions of n.
%C A097939 Sums of the antidiagonals of A099238. - _Paul Barry_, Oct 08 2004
%H A097939 Alois P. Heinz, <a href="/A097939/b097939.txt">Table of n, a(n) for n = 1..1000</a> (correcting an earlier b-file from Vincenzo Librandi)
%F A097939 G.f.: Sum_{k>=1} x^k/(1-x-x^k).
%F A097939 a(n) = Sum_{r=0..n-1} Sum_{k=0..floor((n-r-1)/(r+1))} binomial(n-r(k+1)-1, k). - _Paul Barry_, Oct 08 2004
%F A097939 G.f.: (1-x)^2 * Sum_{k>=1} k*x^k/((x^k+x-1)*(x^(k+1)+x-1)). - _Vladeta Jovovic_, Apr 23 2006
%F A097939 G.f.: Sum_{k>=1} x^k/((1-x)^k*(1-x^k)). - _Vladeta Jovovic_, Mar 02 2008
%F A097939 G.f.: Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series) where a=1/(1-x). - _Joerg Arndt_, Jan 30 2011
%F A097939 G.f.: Sum_{n>=1} (a*x)^n/(1-x^n) where a=1/(1-x). - _Joerg Arndt_, Jan 01 2013
%F A097939 G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1-x)^d. - _Paul D. Hanna_, Jul 18 2013
%F A097939 a(n) ~ 2^(n-1). - _Vaclav Kotesovec_, Oct 28 2014
%p A097939 A097939:=n->add(add(binomial(n-r*(k+1)-1,k), k=0..floor((n-r-1)/(r+1))), r=0..n-1): seq(A097939(n), n=1..50); # _Wesley Ivan Hurt_, Dec 03 2016
%p A097939 # second Maple Program:
%p A097939 b:= proc(n, m) option remember; `if`(n=0, m,
%p A097939       add(b(n-j, min(j, m)), j=1..n))
%p A097939     end:
%p A097939 a:= n-> b(n$2):
%p A097939 seq(a(n), n=1..40);  # _Alois P. Heinz_, Jul 26 2020
%t A097939 Drop[ CoefficientList[ Series[ Sum[x^k/(1 - x - x^k), {k, 50}], {x, 0, 35}], x], 1] (* _Robert G. Wilson v_, Sep 08 2004 *)
%o A097939 (PARI)
%o A097939 N=66; x='x+O('x^N);
%o A097939 gf= sum(k=1,N, x^k/(1-x-x^k) );
%o A097939 Vec(gf)
%o A097939 /* _Joerg Arndt_, Jan 01 2013 */
%o A097939 (PARI) {a(n)=polcoeff(sum(m=1,n,x^m*sumdiv(m,d,1/(1-x +x*O(x^n))^d) ),n)}
%Y A097939 Cf. A046746, A092309, A097940, A097941, A099238, A336902, A336903.
%Y A097939 Column k=1 of A322427.
%K A097939 easy,nonn
%O A097939 1,2
%A A097939 _Vladeta Jovovic_, Sep 05 2004
%E A097939 More terms from _Robert G. Wilson v_, Sep 08 2004