This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097939 #51 Oct 15 2024 17:13:31 %S A097939 1,3,6,12,22,42,79,151,291,566,1106,2175,4293,8499,16864,33523,66727, %T A097939 132958,265137,529050,1056169,2109282,4213710,8419697,16827079, %U A097939 33634489,67237513,134424624,268768414,537407062,1074605619,2148875961,4297212424,8593556211,17185713097,34369170909 %N A097939 Sum of the smallest parts of all compositions of n. %C A097939 Sums of the antidiagonals of A099238. - _Paul Barry_, Oct 08 2004 %H A097939 Alois P. Heinz, <a href="/A097939/b097939.txt">Table of n, a(n) for n = 1..1000</a> (correcting an earlier b-file from Vincenzo Librandi) %F A097939 G.f.: Sum_{k>=1} x^k/(1-x-x^k). %F A097939 a(n) = Sum_{r=0..n-1} Sum_{k=0..floor((n-r-1)/(r+1))} binomial(n-r(k+1)-1, k). - _Paul Barry_, Oct 08 2004 %F A097939 G.f.: (1-x)^2 * Sum_{k>=1} k*x^k/((x^k+x-1)*(x^(k+1)+x-1)). - _Vladeta Jovovic_, Apr 23 2006 %F A097939 G.f.: Sum_{k>=1} x^k/((1-x)^k*(1-x^k)). - _Vladeta Jovovic_, Mar 02 2008 %F A097939 G.f.: Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series) where a=1/(1-x). - _Joerg Arndt_, Jan 30 2011 %F A097939 G.f.: Sum_{n>=1} (a*x)^n/(1-x^n) where a=1/(1-x). - _Joerg Arndt_, Jan 01 2013 %F A097939 G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1-x)^d. - _Paul D. Hanna_, Jul 18 2013 %F A097939 a(n) ~ 2^(n-1). - _Vaclav Kotesovec_, Oct 28 2014 %p A097939 A097939:=n->add(add(binomial(n-r*(k+1)-1,k), k=0..floor((n-r-1)/(r+1))), r=0..n-1): seq(A097939(n), n=1..50); # _Wesley Ivan Hurt_, Dec 03 2016 %p A097939 # second Maple Program: %p A097939 b:= proc(n, m) option remember; `if`(n=0, m, %p A097939 add(b(n-j, min(j, m)), j=1..n)) %p A097939 end: %p A097939 a:= n-> b(n$2): %p A097939 seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 26 2020 %t A097939 Drop[ CoefficientList[ Series[ Sum[x^k/(1 - x - x^k), {k, 50}], {x, 0, 35}], x], 1] (* _Robert G. Wilson v_, Sep 08 2004 *) %o A097939 (PARI) %o A097939 N=66; x='x+O('x^N); %o A097939 gf= sum(k=1,N, x^k/(1-x-x^k) ); %o A097939 Vec(gf) %o A097939 /* _Joerg Arndt_, Jan 01 2013 */ %o A097939 (PARI) {a(n)=polcoeff(sum(m=1,n,x^m*sumdiv(m,d,1/(1-x +x*O(x^n))^d) ),n)} %Y A097939 Cf. A046746, A092309, A097940, A097941, A099238, A336902, A336903. %Y A097939 Column k=1 of A322427. %K A097939 easy,nonn %O A097939 1,2 %A A097939 _Vladeta Jovovic_, Sep 05 2004 %E A097939 More terms from _Robert G. Wilson v_, Sep 08 2004