cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097941 Total number of smallest parts in all compositions of n.

This page as a plain text file.
%I A097941 #25 Oct 15 2024 17:14:04
%S A097941 1,3,6,15,31,72,155,340,738,1595,3424,7335,15642,33243,70432,148808,
%T A097941 313571,659188,1382682,2894369,6047397,12613209,26265098,54610722,
%U A097941 113387831,235117449,486933645,1007290340,2081469759,4296789924,8861401891,18258651137,37589337434
%N A097941 Total number of smallest parts in all compositions of n.
%H A097941 Alois P. Heinz, <a href="/A097941/b097941.txt">Table of n, a(n) for n = 1..1000</a> (first 500 terms from Vincenzo Librandi)
%H A097941 Knopfmacher, Arnold; Munagi, Augustine O.  <a href="https://doi.org/10.1007/978-3-642-30979-3_11">Smallest parts in compositions</a>, Kotsireas, Ilias S. (ed.) et al., Advances in combinatorics. In part based on the 3rd Waterloo workshop on computer algebra (WWCA, W80) 2011, Waterloo, Canada, May 26-29, 2011. Berlin: Springer. 197-207 (2013).
%F A097941 G.f.: (1-x)^2 * Sum_{k>=1} x^k/(1-x-x^k)^2.
%F A097941 a(n) ~ n*2^(n-3). - _Vaclav Kotesovec_, Apr 30 2014
%F A097941 a(n) = Sum_{k=0..n} k * A238342(n,k). - _Alois P. Heinz_, Oct 15 2024
%t A097941 Drop[ CoefficientList[ Series[(1 - x)^2*Sum[x^k/(1 - x - x^k)^2, {k, 50}], {x, 0, 30}], x], 1] (* _Robert G. Wilson v_, Sep 08 2004 *)
%Y A097941 Cf. A092269, A097939, A097940, A238342.
%K A097941 easy,nonn
%O A097941 1,2
%A A097941 _Vladeta Jovovic_, Sep 05 2004
%E A097941 More terms from _Robert G. Wilson v_, Sep 08 2004