This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097954 #37 Jul 10 2023 10:27:11 %S A097954 1,2,4,6,11,12,13,35,46,57,128,156,263,353,396,429,783,982,1058,1563, %T A097954 1695,1816,1937,4236,4431,6858,9898,13145,16646,20891,63351,105296, %U A097954 113693,121144,163780,234915,284751 %N A097954 Numbers k such that 7*10^k + 9 is prime. %C A097954 a(38) > 3*10^5. - _Robert Price_, Jul 10 2023 %H A097954 Makoto Kamada, <a href="https://stdkmd.net/nrr/7/70009.htm#prime">Prime numbers of the form 700...009</a>. %H A097954 Sabin Tabirca and Kieran Reynolds, <a href="https://web.archive.org/web/20220421133441/http://multimedia.ucc.ie/Staff/ST/articles/SNJ03_Tabirca1.ps">Lacunary Prime Numbers</a>. %H A097954 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>. %F A097954 a(n) = A101130(n) + 1. %e A097954 k=2 we get 7*10^2+9 = 7*100+9 = 709, which is prime. %t A097954 Do[ If[ PrimeQ[ 7*10^n + 9], Print[ n ]], {n, 0, 10000}] (* _Robert G. Wilson v_, Jan 19 2005 *) %t A097954 Select[Range[0, 10000], PrimeQ[7 10^# + 9] &] (* _Vincenzo Librandi_, Sep 06 2015 *) %o A097954 (Magma) [n: n in [0..400] |IsPrime(7*10^n + 9)]; // _Vincenzo Librandi_, Sep 06 2015 %o A097954 (PARI) is(n)=ispseudoprime(7*10^n+9) \\ _Charles R Greathouse IV_, Jun 13 2017 %Y A097954 Cf. A101130. %K A097954 more,nonn %O A097954 1,2 %A A097954 Julien Peter Benney (jpbenney(AT)ftml.net), Sep 05 2004 %E A097954 a(19)-a(27) from _Robert G. Wilson v_, Jan 19 2005 %E A097954 a(28)-a(31) from Kamada data by _Robert Price_, Dec 14 2010 %E A097954 a(32)-a(35) from _Robert Price_, Sep 05 2015 %E A097954 a(36)-a(37) from _Robert Price_, Jul 10 2023