A097955 Primes p such that p divides 5^((p-1)/2) - 2^((p-1)/2).
3, 13, 31, 37, 41, 43, 53, 67, 71, 79, 83, 89, 107, 151, 157, 163, 173, 191, 197, 199, 227, 239, 241, 271, 277, 281, 283, 293, 307, 311, 317, 347, 359, 373, 397, 401, 409, 431, 439, 443, 449, 467, 479, 521, 523, 547, 557, 563, 569, 587, 599, 601, 613, 631, 641
Offset: 1
Examples
For p = 13, 5^6 - 2^6 = 15561 is divisible by 13, so 13 is in the sequence.
Links
Crossrefs
Programs
-
Maple
select(p -> isprime(p) and 10 &^ ((p-1)/2) mod p = 1, [seq(i,i=3..1000,2)]); # Robert Israel, Dec 28 2015
-
Mathematica
Select[Prime[Range[100]], JacobiSymbol[10, #] == 1 &] (* Alonso del Arte, Dec 27 2015 *)
-
PARI
\\ s = +-1,d=diff ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0,print1(p","))) } ptopm1d2(1000, 5, 3, -1)
-
PARI
isA097955(p) == isprime(p) && kronecker(10,p) == 1 \\ Jianing Song, Oct 13 2022
Comments