cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097958 Primes p such that p divides 6^((p-1)/2) - 3^((p-1)/2).

This page as a plain text file.
%I A097958 #20 Apr 21 2022 09:18:20
%S A097958 3,7,17,23,31,41,47,71,73,79,89,97,103,113,127,137,151,167,191,193,
%T A097958 199,223,233,239,241,257,263,271,281,311,313,337,353,359,367,383,401,
%U A097958 409,431,433,439,449,457,463,479,487,503,521,569,577,593,599,601,607,617
%N A097958 Primes p such that p divides 6^((p-1)/2) - 3^((p-1)/2).
%C A097958 Apart from the first term, the same as A001132 or A038873. - _Jianing Song_, Apr 21 2022
%H A097958 Jianing Song, <a href="/A097958/b097958.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..998 from Harvey P. Dale)
%F A097958 Equals {3} union A001132. - _Jianing Song_, Apr 21 2022
%t A097958 Select[Prime[Range[150]],Divisible[6^((#-1)/2)-3^((#-1)/2),#]&] (* _Harvey P. Dale_, Dec 25 2021 *)
%o A097958 (PARI) \s = +-1,d=diff ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0,print1(p","))) }
%o A097958 (PARI) isA097958(p) = (p==3) || (isprime(p) && kronecker(p,2)==1) \\ _Jianing Song_, Apr 21 2022
%Y A097958 Cf. A001132, A038873.
%K A097958 nonn,easy
%O A097958 1,1
%A A097958 _Cino Hilliard_, Sep 06 2004
%E A097958 Definition corrected by _Cino Hilliard_, Nov 10 2008
%E A097958 Definition clarified by _Harvey P. Dale_, Dec 25 2021
%E A097958 Offset corrected by _Jianing Song_, Apr 21 2022