This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097961 #16 Jul 24 2023 23:07:09 %S A097961 1,2,3,60,73,357,690,970,1560,1844,2016,2071,3267,7034,22388,37244, %T A097961 137166,808334,1126996,3420839,4971830,14647946,15553569,21957090, %U A097961 31327140,90514444,98576118,204198604,210662116,553825420,1395717645,2820805440,6780317160 %N A097961 Numbers k such that the sum of the first k odd primes is divisible by k. %F A097961 Numbers k such that A071148(k)/k or (A007504(k+1)-2)/k is an integer. %F A097961 Sum_{i=1..a(n)} prime(i) = n*A363477(n). - _Ya-Ping Lu_, Jun 16 2023 %e A097961 a(1) = 1 since 3 is divisible by 1. %e A097961 a(2) = 2 since 3 + 5 = 8 is divisible by 2. %e A097961 a(3) = 3 since 3 + 5 + 7 = 15 is divisible by 3. %e A097961 a(4) != 4 since 3 + 5 + 7 + 11 = 26 is not divisible by 4. %e A097961 98576118 * 977748014 = 96382603602329652. %t A097961 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 2; s = 0; Do[p = NextPrim[p]; s = s + p; If[ Mod[s, n] == 0, Print[n]], {n, 151666666}] (* _Robert G. Wilson v_, Oct 23 2004 *) %o A097961 (C++) %o A097961 #include <fstream> %o A097961 #include <iostream> %o A097961 using namespace std; %o A097961 int primes[999] = {/* first 999 odd primes here, omitted for space*/}; %o A097961 int total = 0; %o A097961 int main() { %o A097961 for (int a = 1; a < 1000; a++) { %o A097961 total = total + primes[a-1]; %o A097961 if (total % a == 0) cout << a << ", "; %o A097961 } %o A097961 return 0; %o A097961 } /* Anne Donovan, Oct 22 2004 */ %o A097961 (Python) %o A097961 from sympy import sieve %o A097961 L = sieve.primerange(3, 1.7*10**11); s, k = 0, 0 %o A097961 for p in L: %o A097961 s += p; k += 1 %o A097961 if s%k == 0: print(k, end = ", ") # _Ya-Ping Lu_, Jun 16 2023 %Y A097961 Cf. A071148, A363477. %K A097961 easy,nonn %O A097961 1,2 %A A097961 Anne M. Donovan (anned3005(AT)aol.com), Oct 22 2004 %E A097961 More terms from _Robert G. Wilson v_, Oct 23 2004 %E A097961 a(28)-a(30) from _Rémy Sigrist_, Sep 25 2016 %E A097961 a(31)-a(33) from _Ya-Ping Lu_, Jun 16 2023