This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097964 #21 Nov 09 2018 07:32:16 %S A097964 2,5,7,3,5,8,2,3,6,5,8,13,6,11,17,4,8,12,10,17,27,12,21,34,9,15,24,20, %T A097964 34,54,25,42,68,18,30,49,40,68,108,50,85,136,36,61,97,80,135,216,101, %U A097964 170,271,72,121,194,160,270,430,201,339,541,144,242,387 %N A097964 Rectangular array read by rows (n > 0, 1 <= k <= 3): T(n,k) = floor(b(n,k)/2^((A002264(n) + 1)/3)), where b(n,k) = b(n-3,k) + 3*b (n-6,k) + 2*b(n-9,k), with initial values given in comments. %C A097964 From _Franck Maminirina Ramaharo_, Nov 08 2018: (Start) %C A097964 The initial values for b(n,k), 1 <= n <= 9, 1 <= k <= 3, are %C A097964 n\k | 1 2 3 %C A097964 ----+--------- %C A097964 1 | 4 8 12 %C A097964 2 | 5 8 13 %C A097964 3 | 4 6 10 %C A097964 4 | 10 16 26 %C A097964 5 | 13 22 35 %C A097964 6 | 9 16 25 %C A097964 7 | 26 44 70 %C A097964 8 | 32 54 86 %C A097964 9 | 23 38 61. (End) %F A097964 From _Franck Maminirina Ramaharo_, Nov 08 2018: (Start) %F A097964 Let M and A denote the following 3 X 3 matrices: %F A097964 0, 2, 0 %F A097964 M = 1, 1, 1 %F A097964 1, 1, 0 %F A097964 and %F A097964 0, 1, 1 %F A097964 A = 1, 1, 2 %F A097964 1, 2, 3. %F A097964 Then applying floor() to the entries in (h*M)^(n + 1)*A, where h = 1/(2^(1/3)), yields row 3*n - 2 to 3*n. (End) %e A097964 Array begins: %e A097964 2, 5, 7; %e A097964 3, 5, 8; %e A097964 2, 3, 6; %e A097964 5, 8, 13; %e A097964 6, 11, 17; %e A097964 4, 8, 12; %e A097964 10, 17, 27; %e A097964 12, 21, 34; %e A097964 9, 15, 24; %e A097964 20, 34, 54; %e A097964 25, 42, 68; %e A097964 18, 30, 49; %e A097964 ... - _Franck Maminirina Ramaharo_, Nov 08 2018 %t A097964 M = N[4^(1/3)*({{0, 1, 0}, {1, 1, 0}, {0, 0, 0}}/2 + {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}/2)]; %t A097964 A[n_] := M.A[n - 1]; A[0] := {{0, 1, 1}, {1, 1, 2}, {1, 2, 3}}; %t A097964 Table[Floor[M.A[n]], {n, 1, 12}]//Flatten %Y A097964 Cf. A097966. %K A097964 nonn,tabf,less %O A097964 1,1 %A A097964 _Roger L. Bagula_, Sep 06 2004 %E A097964 Edited, new name, and offset corrected by _Franck Maminirina Ramaharo_, Nov 08 2018