This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A097976 #17 Oct 15 2024 20:03:32 %S A097976 1,4,10,24,53,118,253,542,1143,2396,4986,10330,21304,43808,89837, %T A097976 183838,375514,765880,1559979,3173794,6450514,13098246,26574968, %U A097976 53877266,109153818,221002456,447199458,904420716,1828192748,3693782678,7459897213,15059812760,30390898331 %N A097976 Sum of largest parts (counted with multiplicity) in all compositions of n. %H A097976 Alois P. Heinz, <a href="/A097976/b097976.txt">Table of n, a(n) for n = 1..1000</a> %F A097976 G.f.: (1-x)^2 * Sum_{k>=1} k*x^k/(1 - 2*x + x^(k+1))^2. %e A097976 a(3)=10 because in the compositions 111, 12, 21, 3 the largest parts are 1, 2, 2, 3 with multiplicities 3, 1, 1, 1, respectively and 3*1 + 1*2 + 1*2 + 1*3 = 10. %p A097976 G:=(1-x)^2*sum(k*x^k/(1-2*x+x^(k+1))^2, k=1..45): Gser:=series(G,x=0,40): seq(coeff(Gser,x^n),n=1..35); # _Emeric Deutsch_, Jul 28 2005 %Y A097976 Cf. A097940, A092321. %K A097976 easy,nonn %O A097976 1,2 %A A097976 _Vladeta Jovovic_, Sep 07 2004 %E A097976 More terms from _Emeric Deutsch_, Jul 28 2005