cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097979 Total number of largest parts in all compositions of n.

This page as a plain text file.
%I A097979 #40 Oct 16 2024 14:24:58
%S A097979 1,3,6,12,23,46,91,183,367,737,1478,2962,5928,11858,23707,47384,94698,
%T A097979 189260,378277,756160,1511730,3022672,6044472,12088395,24177600,
%U A097979 48359695,96732370,193495606,387057584,774248858,1548754115,3097980230,6196797193,12395022288
%N A097979 Total number of largest parts in all compositions of n.
%C A097979 Also number of compositions of n+1 with unique largest part. - _Vladeta Jovovic_, Apr 03 2005
%H A097979 Alois P. Heinz, <a href="/A097979/b097979.txt">Table of n, a(n) for n = 1..1000</a> (first 200 terms from Vincenzo Librandi)
%F A097979 G.f.: (1-x)^2 * Sum_{k>=1} x^k/(1-2*x+x^(k+1))^2.
%F A097979 a(n) ~ 2^(n-1)/log(2). - _Vaclav Kotesovec_, Apr 30 2014
%t A097979 nn=32; Drop[CoefficientList[Series[Sum[x^j/(1 - (x - x^(j + 1))/(1 - x))^2, {j, 1, nn}], {x, 0, nn}], x], 1] (* _Geoffrey Critzer_, Mar 31 2014 *)
%t A097979 b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[_, 0] = 0; a[n_] := a[n+1, 1]; Table[a[n], {n, 1, 32}] (* _Jean-François Alcover_, Feb 10 2015, after A238341 *)
%o A097979 (PARI) { b(t)=local(r);sum(k=1,t, forstep(s=t%k,t-k,k,u=(t-k-s)\k;r+=binomial(-2,s)*(-2)^(s-u)*binomial(s,u)));r }
%o A097979 { a(n)=b(n)-2*b(n-1)+b(n-2) } \\ _Max Alekseyev_, Apr 16 2005
%Y A097979 Cf. A097941, A046746.
%Y A097979 Column k=1 of A238341.
%K A097979 easy,nonn
%O A097979 1,2
%A A097979 _Vladeta Jovovic_, Sep 07 2004
%E A097979 More terms from _Max Alekseyev_, Apr 16 2005