This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098052 #19 Feb 03 2025 17:03:27 %S A098052 1,4,4,6,10,12,0,4,4,30,12,12,0,0,1,16,48,18,48,0,6,4,4,70,72,100,27, %T A098052 12,22,20,102,114,232,76,66,68,6,10,114,231,448,232,180,201,48,16,204, %U A098052 330,728,628,462,546,184,24 %N A098052 T(n,k) counts the solid partitions of n that can be extended to a solid partition of n+1 in exactly (k+3) ways. Equivalently, the number of solid partitions of n that have exactly k+3 partitions of n+1 majoring them. %C A098052 Row sums are A000293 (solid partitions) by definition. %C A098052 First column is conjectured to be A007426 = tau_4(n). %C A098052 All solid partitions can be extended in at least 4 ways (hence the offset 4). %H A098052 Wouter Meeussen, <a href="/A094504/a094504_1.txt">Mma functions for plane and solid partitions</a> %e A098052 T(5,7)=1 because there is only 1 solid partition of 5 [{{2, 1}, {1}}, {{1}}] that can be extended to a solid partition of 6 in exactly (7+3 =10) ways: %e A098052 [{{2,1},{2}},{{1}}], [{{2,1},{1,1}},{{1}}], [{{2,2},{1}},{{1}}], %e A098052 [{{3,1},{1}},{{1}}], [{{2,1,1},{1}},{{1}}], [{{2,1},{1},{1}},{{1}}], %e A098052 [{{2,1},{1}},{{2}}], [{{2,1},{1}},{{1,1}}], [{{2,1},{1}},{{1},{1}}], %e A098052 [{{2,1},{1}},{{1}},{{1}}]. %e A098052 Table starts %e A098052 1; %e A098052 4; %e A098052 4,6; %e A098052 10,12,0,4; %e A098052 4,30,12,12,0,0,1; %e A098052 16,48,18,48,0,6,4; %e A098052 4,70,72,100,27,12,22; %e A098052 20,102,114,232,76,66,68,6; %e A098052 ... %t A098052 (* functions 'solidform' and 'coversplaneQ', see A096574 *) %t A098052 Table[ Rest@BinCounts[Count[Flatten[solidformBTK/@IntegerPartitions[n+1]],q_/;coverssolidQ[q,#]]&/@Flatten[solidformBTK/@IntegerPartitions[n]]] ,{n,1,8}] (* _Wouter Meeussen_, Feb 03 2025 *) %Y A098052 Cf. A000029, A007426, A097994. %K A098052 nonn,tabf,hard,more %O A098052 4,2 %A A098052 _Wouter Meeussen_, Sep 11 2004