This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098057 #10 Jul 26 2022 12:42:51 %S A098057 1,1,1,2,4,8,15,27,48,84,147,257,451,796,1413,2526,4544,8226,14978, %T A098057 27417,50434,93183,172865,321857,601263,1126644,2116968,3987960, %U A098057 7530200,14249649,27019301,51327965,97676156,186177568,355406479,679425009 %N A098057 Number of peakless Motzkin paths with no U H^j U, no D H^j D and no D H^jU (j>0), where U=(1,1), D=(1,-1) and H=(1,0) (can be easily expressed using RNA secondary structure terminology). %H A098057 I. L. Hofacker, P. Schuster and P. F. Stadler, <a href="http://dx.doi.org/10.1016/S0166-218X(98)00073-0">Combinatorics of RNA secondary structures</a>, Discrete Appl. Math., 88, 1998, 207-237. %H A098057 P. R. Stein and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1979), 261-272. %H A098057 M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.mat.univie.ac.at/~slc/opapers/s08viennot.html">Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire</a>, Sem. Loth. Comb. B08l (1984) 79-86. %F A098057 G.f.: [1-z+z^2-4z^3+2z^4-sqrt(1-2z-z^2+2z^3+z^4-4z^5+4z^6)]/[2z^2*(1-z)^3]. %F A098057 D-finite with recurrence (n+2)*a(n) +(-5*n-7)*a(n-1) +2*(4*n+5)*a(n-2) +(-2*n-13)*a(n-3) +3*(-2*n+5)*a(n-4) +18*(1)*a(n-5) +(17*n-101)*a(n-6) +(-25*n+154)*a(n-7) +2*(8*n-53)*a(n-8) +4*(-n+7)*a(n-9)=0. - _R. J. Mathar_, Jul 26 2022 %e A098057 a(4)=4 because we have HHHH, UHDU, HUHD and UHHD; a(6)=15 because from all 17 peakless Motzkin paths of length 6 (see A004148) only (UHU)HDD and UUH(DHD) do not qualify. %Y A098057 Cf. A004148. %K A098057 nonn %O A098057 0,4 %A A098057 _Emeric Deutsch_, Sep 11 2004