cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098075 Threefold convolution of A004148 (the RNA secondary structure numbers) with itself.

This page as a plain text file.
%I A098075 #15 Jul 24 2022 11:53:58
%S A098075 1,3,6,13,30,69,160,375,885,2102,5022,12060,29095,70485,171399,418220,
%T A098075 1023663,2512761,6184253,15257262,37725972,93477778,232069116,
%U A098075 577179078,1437926977,3587977293,8966170056,22437282917,56221762626,141051397725
%N A098075 Threefold convolution of A004148 (the RNA secondary structure numbers) with itself.
%H A098075 I. L. Hofacker, P. Schuster and P. F. Stadler, <a href="https://doi.org/10.1016/S0166-218X(98)00073-0">Combinatorics of RNA secondary structures</a>, Discrete Appl. Math., 88, 1998, 207-237.
%H A098075 P. R. Stein and M. S. Waterman, <a href="https://doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1979), 261-272.
%H A098075 M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.mat.univie.ac.at/~slc/opapers/s08viennot.html">Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire</a>, Sem. Loth. Comb. B08l (1984) 79-86.
%F A098075 a(n) = 3*Sum_{k=ceiling((n+1)/2)..n} binomial(k, n-k)*binomial(k+2, 3+n-k)/k, n >= 1, a(0)=1.
%F A098075 G.f.: f^3, where f = (1 - z + z^2 - sqrt(1 - 2*z - z^2 - 2*z^3 + z^4))/(2z^2) is the g.f. of A004148.
%F A098075 a(n) ~ 3 * 5^(1/4) * phi^(2*n+6) / (2 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, May 29 2022
%F A098075 D-finite with recurrence n^2*(n+6)*a(n) -n*(2*n+5)*(n+2)*a(n-1) -(n+1)*(n^2+2*n-16)*a(n-2) -n*(n+2)*(2*n-1)*a(n-3) +(n-4)*(n+2)^2*a(n-4)=0. - _R. J. Mathar_, Jul 24 2022
%p A098075 a:=proc(n) if n=0 then 1 else 3*sum(binomial(k,n-k)*binomial(k+2,3+n-k)/k,k=ceil((n+1)/2)..n) fi end: seq(a(n),n=0..30);
%Y A098075 Cf. A004148.
%K A098075 nonn
%O A098075 0,2
%A A098075 _Emeric Deutsch_, Sep 13 2004