cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098076 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n and height k (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 11, 5, 1, 20, 15, 1, 1, 36, 38, 7, 1, 64, 91, 28, 1, 1, 113, 211, 89, 9, 1, 199, 477, 255, 45, 1, 1, 350, 1059, 690, 172, 11, 1, 615, 2321, 1797, 572, 66, 1, 1, 1080, 5037, 4555, 1754, 295, 13, 1, 1896, 10847, 11320, 5098, 1118, 91, 1, 1, 3328
Offset: 0

Views

Author

Emeric Deutsch, Sep 13 2004

Keywords

Comments

Row sums are the RNA secondary structure numbers (A004148). Column 1 without the zeros yields A077855.

Examples

			Triangle starts:
1;
1;
1;
1,   1;
1,   3;
1,   6,   1;
1,  11,   5;
1,  20,  15,   1;
1,  36,  38,   7;
1,  64,  91,  28,  1;
1, 113, 211,  89,  9;
1, 199, 477, 255, 45,  1;
Row n >0 has ceil(n/2) terms.
T(6,2) = 5 because the peakless Motzkin paths of length 6 and height 2 are HUUHDD, UHUHDD, UUHHDD, UUHDDH, UUHDHD, where U=(1,1), H=(1,0) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    P[0]:=1: P[1]:=sort(1-z): for j from 2 to 30 do P[j]:=sort(expand((1-z+z^2)*P[j-1]-z^2*P[j-2])) od: G:=1+sum(t^i*z^(2*i+1)/P[i]/P[i+1],i=0..25): Gser:=simplify(series(G,z=0,21)): Q[0]:=1: for m from 1 to 18 do Q[m]:=sort(coeff(Gser,z^m)) od: 1,seq(seq(coeff(t*Q[n],t^k),k=1..ceil(n/2)),n=1..16);
  • Mathematica
    max = 16; p[0] = 1; p[1] := 1 - z; p[j_] := p[j] = (1 - z + z^2)*p[j - 1] - z^2*p[j - 2]; gf = 1 + Sum[t^j*z^(2*j + 1)/(p[j]*p[j + 1]), {j, 0, max}]; se = Series[gf, {t, 0, max}, {z, 0, max}]; CoefficientList[se, {z, t}] // DeleteCases[#, 0, 2] & // Flatten (* Jean-François Alcover, Jun 25 2013 *)

Formula

G.f.: 1+sum(t^j*z^(2j+1)/[P(j)*P(j+1)], j=0..infinity), where P(j) are polynomials in z defined by P(0)=1, P(1)=1-z, P(j)=(1-z+z^2)P(j-1) -z^2*P(j-2), j=2, 3, ... .