cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098056 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n containing k subwords of the type uh^ju, dH^jd, or dh^ju for some j>0, where u=(1,1), d=(1,-1) and h=(1,0) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 2, 27, 9, 1, 48, 29, 5, 84, 80, 21, 147, 198, 74, 4, 257, 463, 230, 27, 1, 451, 1033, 667, 125, 7, 796, 2235, 1811, 488, 43, 1413, 4727, 4694, 1676, 219, 6, 2526, 9828, 11700, 5317, 946, 54, 1, 4544, 20192, 28252, 15813, 3696, 326, 9, 8226, 41100
Offset: 0

Views

Author

Emeric Deutsch, Sep 11 2004

Keywords

Comments

Row sums are the RNA secondary structure numbers (A004148).
T(n,0) = A098057(n).
Sum(k*T(n,k),k>=0) = A187259(n).

Examples

			Triangle starts:
  1;
  1;
  1;
  2;
  4;
  8;
  15,2;
  27,9,1;
  48,29,5;
  84.80,21;
  147,198,74,7;
  ...
It seems that the number r(n) of terms in row n>=3 is given by r(n)=n/2-1 if n=2 (mod 4) and r(n)=2*round(n/4)-1 otherwise (here round(m) is the nearest integer to m).
T(7,1)=9 because we have h(uhu)hdd, (uhhu)hdd, (uhu)hhdd, (uhu)hddh, uh(dhu)hd and the reflections of the first four paths in a vertical axis; here u=(1,1), h=(1,0), d=(1,-1) and the pertinent subwords are shown between parentheses.
		

Crossrefs

Formula

G.f.=G=G(t, z) satisfies G = 1 + zG + z^2*[H + 2tzH/(1-z)+t^2*z^2*H/(1-z)^2+ z/(1-z)][G-(1-t)zH/(1-z)^2], where H=(1-z)^2*G-1+z.
The 4-variate g.f. G(t,s,v,z) of peakless Motzkin paths, where t, s, v mark subwords of the types uH^ju, dH^jd, dH^ju, respectively, and z marks length, satisfies the equation
G = 1+zG+z^2*[H + (t+s)zH/(1-z)+tsz^2*H/(1-z)^2+z/(1-z)][G-(1-v)zH/(1-z)^2],
where H = (1-z)[(1-z)G-1]. As special cases we get the current sequence A098056 and the sequences A097777 and A098083.

A190162 Number of peakless Motzkin paths of length n containing no subwords of type dh^ju (j>=1), where u=(1,1), h=(1,0), and d=(1,-1) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 77, 167, 365, 805, 1790, 4008, 9033, 20477, 46663, 106843, 245691, 567194, 1314086, 3054442, 7120951, 16647056, 39015476, 91654385, 215780420, 509033640, 1203085539, 2848445175, 6755095119, 16044373511, 38162885226, 90897048648
Offset: 0

Views

Author

Emeric Deutsch, May 05 2011

Keywords

Comments

a(n)=A098083(n,0).

Examples

			a(7)=36 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only uh(dhu)hd has a subword of the forbidden type (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*(G-1)*((1-z)*G+z/(1-z)): G := RootOf(eq,G): Gser := series(G,z=0,38): seq(coeff(Gser,z,n), n = 0 .. 33);

Formula

G.f.: G=G(z) satisfies the equation G=1+zG+z^2*(G-1)[(1-z)G+z/(1-z)].
D-finite with recurrence (n+2)*a(n) +5*(-n-1)*a(n-1) +2*(4*n+1)*a(n-2) +(-6*n+5)*a(n-3) +(8*n-27)*a(n-4) +2*(-7*n+31)*a(n-5) +(13*n-71)*a(n-6) +(-7*n+47)*a(n-7) +(3*n-25)*a(n-8) +(-n+9)*a(n-9)=0. - R. J. Mathar, Jul 22 2022

A190163 Number of subwords of type dh^ju (j>=1), where u=(1,1), h=(1,0), and d=(1,-1), in all peakless Motzkin paths of length n (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 5, 18, 58, 174, 500, 1399, 3843, 10421, 27997, 74699, 198267, 524135, 1381261, 3631068, 9526568, 24954538, 65283648, 170610003, 445484163, 1162396269, 3031267533, 7901082379, 20586262763, 53620039074, 139624131310, 363495081689, 946147596489, 2462387385085
Offset: 0

Views

Author

Emeric Deutsch, May 05 2011

Keywords

Comments

a(n)=Sum(k*A098083(n,k), k>=0).

Examples

			a(7)=1 because among the 37 (=A004148(7)) peakless  Motzkin paths of length 7 only uh(dhu)hd  has a subword of the prescribed type (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    eq := g = 1+z*g+z^2*g*(g-1): g := RootOf(eq, g): G := z^5*g^2*(g-1)^2/((1-z)*(1-z^2*g^2)): Gser := series(G, z = 0, 38): seq(coeff(Gser, z, n), n = 0 .. 35);

Formula

G.f.: G(z)=z^5*g^2*(g-1)^2/[(1-z)(1-z^2*g^2)], where g=1+zg+z^2*g(g-1).
Conjecture D-finite with recurrence -4*(n+1)*(n-7)*a(n) +(13*n^2-85*n+28)*a(n-1) +(-7*n^2+52*n-41)*a(n-2) +(5*n^2-41*n+67)*a(n-3) +(-13*n^2+103*n-197)*a(n-4) +(7*n-29)*(n-5)*a(n-5) -(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jul 22 2022
Showing 1-3 of 3 results.